جزییات آموزش طراحی و تحلیل مهندسی با آباکوس

2	فصل اول (آشنایی با نرم افزار Abaqus و کاربرد آن در صنعت و دانشگاه)
4	فصل دوم (مدلسازی با نرم افزار آباکوس - ماژول Part و Sketch)
6	فصل سوم (تعریف خواص مادہ در نرم افزار - ماژول Property)
7	فصل چهارم (مونتاژ قطعات در نرم افزار - ماژول Assembly)
8	فصل پنجم (تعیین مشخصات و روش حل مسئله - ماژول Step)
9	فصل ششم (تعريف ارتباط بين اجزاء - ماژول Interaction)
11	فصل هفتم (تعریف شرایط مرزی و بارگذاری - ماژول Load)
13	فصل هشتم (تعریف المان و مش ریزی قطعات - ماژول Mesh)
15	فصل نهم (حل مسئله در نرم افزار آباکوس - ماژول Job)
16	فصل دهم (استخراج و مشاهده نتایج تحلیل - ماژول Visualization)

فصل اول (آشنایی با نرم افزار Abaqus و کاربرد آن در صنعت و دانشگاه)

- معرفی هدف این دوره آموزشی
- این دوره آموزشی برای چه افرادی مناسب است؟
 - معرفی کاربرد نرم افزارهای المان محدود
 - مفهوم مهندسی معکوس و کاربرد آن چیست؟
 - مفهوم طراحی بر مبنای استاندارد چیست؟
 - معرفی مراحل مهندسی معکوس
 - چالش های مهندسی معکوس چیست؟
- ارائه یک مثال از مهندسی معکوس با رویکرد تغییر ابعادی
 - معرفی مراحل طراحی بر مبنای استاندارد
 - طراحی مفہومی (Conceptual Design) چیست؟
 - طراحی پایه (Basic Design) چیست؟
 - طراحی تفصیلی (Detailed Design) چیست؟
- ارائه یک مثال (از طراحی مخزن) جهت درک روند کلی طراحی یک قطعه یا تجهیز
 - تشریح مفهوم شرایط کاری و سناریوهای بارگذاری
 - تشریح مفهوم معیارهای پذیرش طراحی در شرایط عادی و حوادث
 - معرفی برخی از پرکاربردترین نرم افزارهای المان محدود
 - معرفی اجمالی شرکت Simulia و دازالت سیستم و نرم افزارهای آن ها
 - معرفی مزایای نرم افزار آباکوس
 - معرفی مراحل شبیه سازی در نرم افزار آباکوس
 - معرفی انواع فایل های خروجی از نرم افزار آباکوس
 - نمایش چند فیلم از شبیه سازی فرآیندهای مختلف در نرم افزار آباکوس
 - معرفی چند مقاله از نوآوری ها و کاربردهای نرم افزار آباکوس
 - معرفی بخش های مختلف محیط گرافیکی نرم افزار آباکوس
 - معرفی اولیه ماژول های نرم افزار آباکوس
 - معرفی واحدهای اندازه گیری که می بایست در آباکوس استفاده شوند
 - معرفی انواع المان ها در آباکوس
 - تشريح مبحث المان محدود
- حلگر استاندارد و Explicit نرم افزار آباکوس از چه روشی برای حل مسائل استفاده می کنند؟

- معرفی روش تعادل در تحلیل المان محدود
- معرفی روش گسترش موج در تحلیل المان محدود
- معرفی اولیه محیط Keywords نرم افزار آباکوس
- اهمیت محیط Keywords نرم افزار آباکوس چیست؟
 - معرفی اولیه محیط subroutine نرم افزار آباکوس
 - معرفی اولیه محیط Python نرم افزار آباکوس

فصل دوم (مدلسازی با نرم افزار آباکوس - ماژول Part و Sketch)

- معرفی دستور Line (خط)
- معرفی دستور Circle (دایره)
- معرفی دستور Rectangle (مستطیل)
- معرفی دستور construction oblique Line (خط مورب)
 - معرفی دستور offset
 - معرفی دستور Remove Gaps and Overlaps
 - معرفی دستور Auto trim
 - معرفی دستور Extend
 - معرفی دستور Split (پارتیشن بندی)
 - معرفی دستور Pattern
 - تشريح ابزار Dimension محيط Sketch
- تشریح روش وابسته نمودن (ایجاد رابطه ریاضی) بین دو قید اندازه
 - تشریح روش ذخیرہ و بازخوانی Sketch رسم شدہ
 - رسم یک نمونه مثال در محیط Sketch
 - معرفی Help نرم افزار آباکوس و تشریح روش استفاده از آن
 - معرفی ابزار View نرم افزار
- تشریح روش ایجاد و ذخیره یک نما (View) دلخواه در محیط Part
 - تشریح روش تغییر تنظیمات پیکربندی موس در نرم افزار آباکوس
 - کاربرد فضای تک بعدی و دو بعدی محیط Part چیست؟
 - مزیت استفاده از مدل های تک بعدی و دوبعدی چیست؟
 - تفاوت جسم صلب (rigid) و شکل پذیر (deformable) چیست؟
 - چرا در بعضی تحلیل ها از جسم صلب استفاده می کنیم؟
- در تعریف جسم صلب، چه زمانی از Discrete rigid و چه زمانی از Analytical rigid استفاده می کنیم؟
 - تفاوت مفهوم لاگرانژی و اویلری چیست؟
 - در انتخاب المان Part چه مواردی را باید مدنظر قرار داد؟
 - معرفی انواع روش های حجم دهی در محیط Part
 - تشریح روش ایجاد صفحه مجازی با استفاده از سه نقطه
 - معرفی کاربرد دستور Project Edges در قالب یک مثال

- معرفی دستور Create Solid: sweep
- معرفی دستور Create Shell: Revolve
- · تشریح روش ایجاد صفحه مجازی با مشخص کردن یک صفحه، خط دوران و زاویه چرخش
 - معرفی دستور Create Cut: Extrude
 - معرفی کاربرد دستورات Delete Feature, Edit Feature, Suppress در ماژول Part
 - معرفی دستور Create Round
 - ارائه دو نمونه تمرین
 - مدل سازی تمرین های جلسه پیش و معرفی دستور Mirror در قالب این تمرین
 - مزیت مدل سازی قطعات و مجموعه های مونتاژی در نرم افزارهای کتیا و سالید چیست؟
- در حین انتقال فایل از نرم افزارهای دیگر به نرم افزار آباکوس چه مشکلاتی ممکن است ایجاد شود؟
 - تشریح روش انتقال فایل از نرم افزار Solid Works به آباکوس
 - تشریح روش لینک کردن دو نرم افزار آباکوس و سالید
 - معرفی بخش های اصلی Help نرم افزار آباکوس
 - تشریح روش صحیح search در Help نرم افزار آباکوس
 - ارائه چند مثال از سرچ عبارات فنی و مشاهده نتایج استخراج شده از Help نرم افزار
 - تشریح اهمیت بخش Tutorials در قسمت Help نرم افزار آباکوس

فصل سوم (تعریف خواص مادہ در نرم افزار - ماژول Property)

- مقدمه بر رفتار مواد و خواص مکانیکی آن ها در جهات مختلف
- معرفی چند مدل نمودار تنش- کرنش که برای تعریف خواص مواد (در نرم افزار آباکوس) به کار می روند
 - ضرورت استفاده از تنش-کرنش حقیقی در نرم افزار
 - معرفی رابطه ای جهت محاسبه تنش-کرنش حقیقی برحسب تنش-کرنش واقعی
 - تشریح روش تعریف خواص ماده در ماژول Property
 - تعریف Material به Section مورد نظر
- تقسیم نمودن یک قطعه به دو بخش با استفاده از ابزار Partition Cell و تعریف جنس متفاوت به هرکدام
 - مفهوم رنگ قرمز و زرد یک قطعه در ماژول Property چیست؟
 - شبیه سازی و اجرای تحلیل بر روی یک تیر با المان Beam
- مشاهده نتایج شبیه سازی یک تیر با سه المان Beam, Shell و Solid و مقایسه جواب آن ها با جواب دقیق (به روش حل تحلیلی)
 - معرفی دو روش پارتیشن بندی یک تیر
 - معرفی دستور Probe Values در ماژول Visualization
 - روش مشاهده گره ها بر روی المان چیست؟
 - تشریح روش به دست آوردن برش و خمش تیر
 - جهت مشاهده نمودار نتایج در نرم افزار آباکوس از کدام ابزار استفاده می کنیم؟
 - تشریح روش انتقال نتایج تحلیل از نرم افزار آباکوس به نرم افزار Word
 - معرفی نکته مهمی در رابطه با تعریف Section قطعاتی که به صورت Shell تعریف شده اند
 - شبیه سازی و اجرای تحلیل بر روی یک تیر با المان Shell
 - انتخاب اشتباه در ضخامت دهی مدل Shell چه تاثیری بر نتایج تحلیل خواهد گذاشت؟
 - تشریح روش مشاهده دو نتیجه از دو تحلیل متفاوت در ماژول Visualization
 - چگونه می توان دو نما (View) را با یکدیگر لینک نمود؟
 - شبیه سازی و اجرای تحلیل بر روی یک تیر با المان Solid
 - معرفی روش کپی کردن یک sketch در نرم افزار آباکوس
 - استفاده از دستور Trim در اصلاح sketch ترسیمی
 - مراحل پارتیشن بندی یک جسم Solid
 - تشریح مراحل کپی کردن Material جسم Shell به جسم Solid
 - مقایسه تنش در مدل solid و Shell و اثبات مطالب قبلی در رابطه با کاربرد مدل های Shell و Beam

فصل چهارم (مونتاژ قطعات در نرم افزار - ماژول Assembly)

- معرفی دستورات اصلی ماژول Assembly
- روش های کلی مونتاژ در ماژول Assembly چیست؟
- به چند روش می توان از دستور Translate استفاده کرد؟
- معرفی نکات مهمی در ورود قطعات به محیط Assembly
 - معرفی دستور Rotate instant در ماژول Assembly
 - معرفی دستور Translate to در ماژول Assembly
 - معرفی قید Parallel Face در ماژول Assembly
 - معرفی قید Coaxial در ماژول Assembly
 - معرفی قید Face to Face در ماژول Assembly
 - کاربرد دستور Merge در نرم افزار آباکوس چیست؟
- کاربرد دستور Cut Geometry در نرم افزار آباکوس چیست؟
- معرفی کاربرد دستور Radial Pattern در ماژول Sketch در قالب یک مثال
 - معرفی کاربرد نما (یا مدل) سیمی قطعات در قالب مثال
 - معرفی کاربرد دستور Radial Pattern در ماژول Assembly
- تفاوت تعريف قطعات به صورت Dependent و Independent در محيط Assembly چيست؟
 - مدل سازی یک ورق و بررسی تنش های صفحه ای آن
 - تشريح روش تعريف مبدا مختصات جديد
 - در چه نقاطی از قطعه می بایست از مش بندی ریزتری استفاده نمود؟

فصل پنجم (تعیین مشخصات و روش حل مسئله - ماژول Step)

- معرفی مراحل اصلی ماژول step
 - معرفی انواع تحلیل های خطی
- معرفی انواع تحلیل های عمومی
- تشریح مفهوم خطی یا غیر خطی بودن تحلیل
- چه زمانی می بایست از تحلیل غیرخطی در حل مسئله استفاده کنیم؟
- مفهوم Time period و Increment size در پنجره Edit step ماژول step چیست؟
 - معنای واگرایی در نرم افزارهای المان محدود چیست؟
 - معرفی عوامل ایجاد واگرایی در تحلیل ها
 - تشریح تفاوت حلگرهای Explicit و Standard در نرم افزار آباکوس
 - معرفی مسائلی که بهتر است آن ها را با حلگر Explicit نرم افزار آباکوس حل کنیم
- تفاوت خروجی تاریخچه ای (History Output) و خروجی میدانی (Field Output) در نرم افزار آباکوس چیست؟
 - ارائه یک مثال از محاسبه تنش برشی و پیچشی یک تیر جدار نازک
 - مقایسه نتایج حاصل از تحلیل یک تیر به همراه و بدون وجود عضو میانی
 - ارائه یک مثال از استخراج پیچش یک پروفیل
 - مدلسازی پروفیل در نرم افزار و تخصیص خواص ماده و اعمال بار پیچشی به آن
 - مشاهده نتایج تحلیل و مقایسه آن با مقادیر تئوری
 - چه تیرهایی را می توان با المان Beam شبیه سازی نمود؟
- ارائه یک مثال از استخراج خیز ورق تحت فشار یکنواخت در نرم افزار آباکوس با سه روش مختلف و مقایسه نتایج آن ها
 - تعریف رفتار پلاستیک ماده در مسئله
 - واگرایی چه زمانی اتفاق می افتد و راه حل رفع آن چیست؟

فصل ششم (تعريف ارتباط بين اجزاء - ماژول Interaction)

- معرفی دستورات اصلی ماژول interaction
- تشریح انواع الگوریتم های تماس (مکانیکی) در حلگرهای Explicit و Standard
- مفهوم Slave Surface و Master Surface در بحث تماس (interaction) چیست؟
- اگر در انتخاب Slave Surfaces و Master Surface دقت لازم انجام نشود چه مشکلاتی به وجود خواهد آمد؟
- مفهوم رفتار نرمال (Normal Behavior) و مماسی (Tangential Behavior) سطح، در بحثِ تماسِ بینِ دو جسم چیست؟
 - چه زمانی بین دو جسم، برهم کنش حرارتی (Thermal interaction) تعریف می شود؟
 - به چه روش هایی می توان ضریب اصطکاک بین دو سطح را در نرم افزار آباکوس تعریف کرد؟
 - جهت تعریف تماس، بین دو جسمی که قبلا در محیط Assembly به یکدیگر اتصال داده شده اند چه باید کرد؟
 - تشریح کاربرد ابزار Find contact Pairs در نرم افزار آباکوس
 - معرفی قید Tie در ماژول interaction
 - معرفی قید Rigid body در ماژول interaction
 - معرفی قید Display body در ماژول interaction
 - معرفی قید Coupling در ماژول interaction
 - معرفی قید Embedded region در ماژول interaction
 - معرفی قید Equation در ماژول interaction
 - تشریح قید Tie در ماژول interaction با ارائه یک <mark>مثال</mark>
 - مفهوم Position tolerance چیست؟
 - مفهوم offset between tied surfaces چیست؟
 - استخراج بار کمانش پوسته استوانه ای با تعریف مختصات و شرایط مرزی استوانه ای
 - ارائه یک مثال از استخراج بار کمانش یک میله ساده به روش Beam
 - مدلسازی میله در نرم افزار و تخصیص خواص ماده و اعمال بار متمرکز به آن
 - مشاهده نتایج تحلیل و مقایسه آن با مقادیر تئوری
 - ارائه یک مثال از استخراج بار کمانش یک میله ساده به روش Solid
 - مدلسازی میله در نرم افزار و تخصیص خواص ماده و اعمال بار متمرکز به آن
 - مشاهده نتایج تحلیل و مقایسه آن با مقدار تئوری
 - اعمال بار فشاری به میله مدلسازی شده به روش Solid

- چگونه می توانیم خواص جسم (جرم، ممان اینرسی و ...) را توسط نرم افزار آباکوس استخراج کنیم؟
 - علت متفاوت بودن نتایج تحلیل کمانش، در اثر اعمال بار متمرکز و بار فشاری چیست؟

فصل هفتم (تعریف شرایط مرزی و بارگذاری - ماژول Load)

- معرفی انواع بارگذاری ها
- تشریح روش اعمال بار متمرکز بر روی قطعه در نرم افزار آباکوس با ارائه مثال
- چگونه می توان با بار فشاری یا کششی (Pressure Load) را در نرم افزار وارد کرد؟
 - اعمال بار Shell edge Load بر روی چه سطوحی امکان پذیر می باشد؟
 - اعمال بار Pipe Pressure بر روی چه المانی امکان پذیر می باشد؟
 - جهت اعمال بار شناوری در نرم افزار آباکوس چه باید کرد؟
 - جهت تعریف شتاب گرانشی در نرم افزار آباکوس چه باید کرد؟
 - تشریح روش اعمال Bolt Load در نرم افزار آباکوس با ارائه مثال
 - کاربرد بارگذاری وابسته به زمان و مکان چیست؟
 - بارگذاری وابسته به زمان به چند شکل می تواند تعریف شود؟
 - کاربرد Amplitude در نرم افزار آباکوس چیست؟
 - معرفی Amplitude نوع Tabular
- جهت تعریف بارهای وابسته به زمان بر اساس توابع پیچیده به نرم افزار آباکوس چه ترفندی می بایست به کار برد؟
 - معرفی Amplitude نوع Periodic
 - معرفی Amplitude نوع Modulated
 - معرفی Amplitude نوع Decay
 - معرفی Amplitude نوع Smooth Step
 - چگونه می توانیم اعمال نیرو برحسب یک تابع مشخص را در نرم افزار آباکوس اعمال کنیم؟
 - تشریح روش استخراج تاریخچه خروجی در ماژول Visualization نرم افزار آباکوس
 - چگونه می توانیم شرایط مرزی تحلیل زلزله را در نرم افزار آباکوس وارد کنیم؟
 - اعمال شرایط مرزی به یک تیر، تحلیل آن با حلگر standard و مشاهده نتایج تحلیل و نمودارهای آن
 - اعمال شرایط مرزی به یک تیر، تحلیل آن با حلگر Explicit و مشاهده نتایج تحلیل و نمودارهای آن
 - مقایسه نتایج تحلیل با حلگر standard و Explicit
 - تشریح فایل تحلیل یک راکتور در نرم افزار آباکوس
 - مفهوم فركانس طبيعى سازه چيست؟
 - تحلیل نتایج اثر نیروی محوری و داخلی بر فرکانس یک لوله کامپوزیتی
 - فرکانس طبیعی یک سازه به چه عاملی بستگی دارد؟
 - تشریح روش مدل سازی قطعه کامپوزیتی در نرم افزار آباکوس

- معرفی کاربرد ابزار Query information جهت رویت لایه های کامپوزیت
- استخراج فرکانس طبیعی قطعه کامپوزیتی مدل شده بدون فشار و نیروی محوری
 - استخراج فرکانس طبیعی قطعه کامپوزیتی مدل شده در اثر اعمال فشار داخلی
- استخراج فرکانس طبیعی قطعه کامپوزیتی مدل شده در اثر اعمال نیروی محوری

فصل هشتم (تعریف المان و مش ریزی قطعات - ماژول Mesh)

- معرفی اولیه دستورات ماژول Mesh
- مفهوم deviation factor در دانه بندی (مش ریزی) یک قطعه چیست؟
 - کاربرد Bias در ابزار Local Seeds ماژول Mesh چیست؟
 - رسم یک صفحه سوراخدار و مش بندی اصولی آن در نرم افزار آباکوس
 - جهت مش بندی هندسه های پیچیده، کدام المان مناسب تر می باشد؟
 - عیب المان های مثلثی چیست؟
 - تفاوت تکنیک مش ریزی sweep و structural چیست؟
 - کاربرد پارتیشن بندی در مش ریزی قطعه چیست؟
 - جهت انتخاب نوع المان مش بندى در ماژول مش چه بايد كرد؟
- رسم یک مکعب سوراخدار و مش ریزی آن با چند المان مختلف (Element shape)
- كاربرد گزينه Minimize the Mesh transition در پنجره Mesh control نرم افزار آباكوس چيست؟
 - الگوريتم مش ريزى Advancing front چيست؟
 - رسم یک مکعب سوراخدار و مش ریزی آن با الگوریتم های Medial axis و Advancing front
 - تفاوت تیر اویلر برنولی و تیموشنکو چیست؟
 - ارزیابی کیفیت المان ها در نرم افزار آباکوس چگونه انجام می شود؟
 - چه نوع المان هایی باعث توقف روند حل مسئله می شوند؟
 - کاربرد مش ریزی مجدد تطبیقی چیست؟
 - تشریح مفهوم همگرایی مش
 - چه زمانی تکینگی تنش (singularity stress) به وجود می آید؟
 - راه حل داشتن یه مش بهینه برای مدل چیست؟
 - ارائه یک مثال حل شده برای درکِ روشِ صحیح بهینه سازی اندازه المان مش
 - ارائه یک مثال حل شده برای درکِ تفاوت نتایج تحلیل standard و explicit
 - مدل سازی ورق و سنبه در نرم افزار و تخصیص خواص پلاستیک به ورق
 - مونتاژ ورق، سنبه و نگهدارنده ورق در محیط Assemble نرم افزار
 - تعريف step ها يا مراحل عمليات شكل دهى ورق در نرم افزار
 - در محاسبه مقدار مناسب Time Period چه نکاتی را باید در نظر بگیریم؟
 - تعریف خروجی های موردنیاز عملیات شکل دهی ورق
 - تعریف ضریب اصطکاک بین اجزا در ماژول interaction
 - اعمال شرایط مرزی بین اجزا در ماژول load

- انجام تحلیل و مشاهده سیمولیشن عملیات (به همراه نتایج آن) در نرم افزار
- تشریح کاربرد فرکانس طبیعی یک جسم در Time Period تحلیل آن و ارائه یک مثال از استخراج فرکانس طبیعی ورق
 - مسئله چه زمانی شبه استاتیکی می باشد؟

فصل نهم (حل مسئله در نرم افزار آباکوس - ماژول Job)

- · روش کاهش زمان حل مسئله از طریق افزایش مصنوعی چگالی ماده چه اثری بر نتایج تحلیل خواهد داشت؟
 - تغییر فرکانس ثبت یا رایت نتایج، چه تاثیری بر حل مسئله خواهد داشت؟
 - حل یک مسئله با حلگر استاندارد، جهت مقایسه زمان حل و نتایج آن با حلگر Explicit
 - ضرورت استخراج مقدار تنش بر مبنای مبدا مختصات دلخواه چیست؟
 - تشریح روش استخراج مقدار تنش بر مبنای مبدا مختصات دلخواه
 - کاربرد گزینه input file در پنجره Create job چیست؟
 - کاربرد گزینه (Recover(explicit در پنجره Edit job چیست؟
 - کاربرد گزینه Restart در پنجره Edit job چیست؟
 - معرفی برخی از خطاهای معمول در نرم افزار آباکوس
 - تشریح مش ریزی به روش Remeshing Rule و Manual Adaptive Remesh با ارائه یک مثال
 - تشریح روش بهینه سازی مش به دو روش دستی و اتوماتیک با ارائه یک مثال
 - بررسی اثر تعداد المان مش بر تعداد خطاهای حل در قالب نمودار
 - چگونه می توانیم تعداد حلقه مناسب (جهت بهینه سازی اتوماتیک مش) را به دست آوریم؟
 - کاربرد ابزار تحلیل همزمان (co-execution) ماژول job چیست؟
 - مزایای ابزار تحلیل همزمان (co-execution) چیست؟
 - برگشت فنری ورق تحت خمش را می بایست با کدام حلگر نرم افزار تحلیل کرد؟
 - مدلسازی برگشت فنری ورق تحت خمش با استفاده از آباکوس
 - اصلاح step ها و شرایط مرزی در این مثال و تشریح روش انتقال نتایج تحلیل قبلی به ابتدای تحلیل فعلی

فصل دهم (استخراج و مشاهده نتایج تحلیل - ماژول (Visualization)

- معرفی دستورات اصلی ماژول Visualization
- چگونه می توان وضعیت تغییر شکل یافته و تغییر شکل نیافته جسم را همزمان مشاهده کرد؟
 - چگونه می توان تنظیمات پیش فرض ابزار contour را تغییر داد؟
- چگونه می توانیم مقدار تنش ماکزیمم و مینیمم جسم را در ماژول Visualization مشاهده کنیم؟
- حذف بعضی از المان های جسم، چه زمانی ضرورت پیدا می کند و توسط کدام ابزار نرم افزار انجام می گیرد؟
 - تهیه انیمیشن از روند تحلیل، با چه ابزاری در نرم افزار آباکوس انجام می گیرد؟
 - تشریح روش ایجاد تغییرات در view نرم افزار
 - تشریح روش ایجاد تغییرات در تنظیمات پیش فرض نمودارهای نرم افزار
 - جهت انتقال نمودار از آباکوس به word و اکسل چه باید کرد؟
 - معرفی کاربرد ابزار Job Diagnostics
 - جهت مشاهده تنش بر روی هر المان چه باید کرد؟
 - جهت تهیه خروجی از آباکوس به notepad چه باید کرد؟
 - کاربرد ابزار view cut manager در نرم افزار آباکوس چیست؟
 - جهت استفاده از ابزار view cut manager در نرم افزار آبا کوس چه باید کرد؟
 - تشریح روش استفاده از ابزار Free body cross-Section
 - معرفی انواع تنش های Primary و Secondary
 - مفهوم خطی سازی تنش چیست؟
 - مدلسازی یک قطعه و تعریف 6 مسیر (یا Path جهت خطی سازی تنش) در آن
 - به چه روش هایی می توان در یک قطعه، مسیر (Path) ایجاد نمود؟
 - تشریح روش خطی سازی تنش با استفاده از 6 مسیر تعریف شده
 - معرفی چند ابزار در نرم افزار جهت سهولت گزارش دهی تحلیل
 - معرفی کاربرد ابزار overlay Plot Layer Manager