

 $oldsymbol{\Theta}$

 $\mathbf{\bullet}$

بسته: سی ان سی

فصل اول۲
فصل دوم٨
فصل سوم
فصل چهارم ۱۳
فصل پنجم
فصل ششم ۱۷
فصل هفتم٩
فصل هشتم۲۲
فصل نهم۲۵
فصل دهم ۳۷
فصل یازدهم
فصل دوازدهم

فصل اول

- استفاده از کنترل CNC روی انواع ماشینهای ابزار
 - مقایسه ماشین ابزار CNC با ماشین ابزاردستی
- عملیات تکراری تراش توسط اپراتور در ماشین تراش دستی
- ثابت و تنظیم کردن قطعه و ابزار برشی توسط اپراتور انسانی در ماشین تراش دستی
 - گیر دادن ابزار و قطعه توسط اپراتور در ماشین سی ان سی
 - تعیین مسیر برشی بهوسیله کد در ماشین CNC توسط اپراتور
 - ذخیره کردن کد برنامه تراش در Part program و بارگذاری در دفعات تکراری
 - پارامترهای مؤثر در انتخاب ماشینهای CNC
 - پیچیدگی و تنوع محصول
 - انعطافپذیری ماشینهای CNC
 - کنترل همزمان چند محور در ماشینهای CNC
 - دقت بالای قطعات و تکراری بودن برنامه ماشینکاری
 - تیراژ بالای قطعات
 - دقت متوسط (تلورانس) ۱۰ میکرونی در ماشینهای سی ان سی
 - مزایای ماشینهایCNC
 - ایمنی بالاتر
 - ضایعات کمتر
 - زمان تلفشده کمتر
 - راندمان بالاتر
 - معایب ماشینهای CNC
 - قيمت بالاتر
 - تعمیر و نگهداری پیچیده و پرهزینه

- نیاز به پرسنل ورزیده و آموزشدیده
- در نظر گرفتن زمان بازگشت سرمایه بر اساس فروش در سرمایهگذاری ماشینهای سی
 ان سی
 - موارد کاربرد CNC
 - قالبسازی قطعات بسیار پیچیده حتی در تیراژ پایین
 - راهاندازی و تنظیم سرعت سروو موتور با درایو و CNC
 - مثالی از کاربرد تراش دستی و سی ان سی
- وظیفه Ncoder (خط کش الکترونیکی اپتیکی) اندازهگیری میزان جابهجایی محورها و ارسال فیدبک
 - توان قابلبرنامهریزی تراش سی ان سی
 - ساخت قطعات مدور دارای محور تقارن با دستگاه تراش CNC
 - مدیریت اسپیندل، تعیین سرعت و جهت برش، تعیین دنده گیربکس و فرمان
 خاموش کردن موتور
 - مدیریت قطعه کار
 - سیستم گیرش قطعه کار (مانند سهنظام) و هماهنگی دستگاه مختصات منطبق بر قطعه کار در برنامه CNC
 - مدیریت ابزار
 - جابجایی و تعویض چند ابزار با برنامه CNC
 - مهمترین وظایف ماشین تراش سی ان سی
 - موقعیت دادن به ابزار روی دو محور
 - تعیین مسیر حرکت ابزار در دو محور به صورت خطی یا دایره ای
 - کنترل سرعت پیشروی
 - ساختار و توانایی قابلبرنامهریزی ماشینهای فرز CNC

- مدیریت اسپیندل، تعیین سرعت و جهت برش، تعیین دنده گیربکس و فرمان
 خاموش کردن موتور در فرز CNC
- تفاوت اسپیندل فرز با تراش در گیر دادن ابزار به اسپیندل در ماشین فرز (چرخش ابزار به جای قطعه)
 - تفاوت گیربکس اسپیندل فرز و تراش در محدوده اشتراک دندههای سبک و سنگین (overlap) که در فرز اسپیندل باید خاموش شود سپس دنده تغییر کند
 - ماشین فرز عمودی مناسب قالبسازی
 - ماشین فرز افقی مناسب قطعهسازی
 - تعیین وضعیت هد در ماشینهای یونیورسال
 - ماشین فرز یونیورسال قابلیت تغییر از افقی به عمودی
 - تغییر وضعیت کاملاً دستی هد در بعضی ماشینهای یونیورسال
 - مدیریت ابزار
 - تعویض ابزار به صورت کاملاً دستی و یا اتوماتیک
 - جبران ابعاد ابزار با شناسایی موقعیت نوک
 - مهمترین وظایف ماشین فرز سی ان سی
 - موقعیت دادن به ابزار روی سه محور با دقت ۰/۰۱ میلیمتر
 - تعیین مسیر حرکت ابزار (حرکت از نقطهای به نقطه دیگر)
 - میان یابی خطی تا سه محور همزمان
 - میان یابی دایرهای با حرکت همزمان دو محور
 - کنترل سرعت پیشروی در ماشین فرز
 - سیستمهای کنترل مدارباز
- ماشینهایی که ابزار تماس مستقیم با قطعه کار ندارد میتواند مدارباز باشد (مانند واتر جت، برش لیزر یا پلاسما)
 - استفاده از موتور پلهای (استپر) در ماشین سی ان سی مدارباز

- کارکرد موتور پلهای به ازای رسیدن پالسها
 - فرمان کنترلر عددی NC به پالس ژنراتور
 - پالس ژنراتور به موتور پلهای
 - حرکت کوپلینگ بهوسیله موتور پلهای
- چرخش بال اسکرو (پیچ ساچمهای) به کمک کوپلینگ
- جابجایی تارت (میز) ماشین با حرکت مهره بال اسکرو
 - سیستمهای کنترل مداربسته
- تعریف سروو موتور (موتور الکتریکی با قابلیت کنترل دقیق سرعت)
 - فرمان کنترلر عددی NC به درایو
 - حرکت کوپلینگ بهوسیله سروو موتور
 - حرکت تارت (میز) ماشین بهوسیله بال اسکرو (پیچ ساچمهای)
 - تغییر شاخص انکدر و ارسال به سیستم فیدبک
 - کار اصلی فیدبک کنترل انحراف محورها
- مراقبت از برخورد وظیفه اپراتور برنامهنویس (فیدبک مانع برخورد نیست)
 - تجهيز كردن محورها
 - سطوح راهنما
- دقت ماشینهای سی ان سی (خطای حدود ۶ تا ۷ میکرون) وابسته به سطوح راهنما
 - box type برای ماشینهای پرقدرت ولی سرعت متوسط
 - linear guide برای ماشینهای ظریف و سریع
 - امکان استفادہ ترکیبی در محورهای مختلف
 - سروو موتورها
 - موتورهای جریان مستقیم DC (کنترل دور از طریق شدت جریان)
 - موتورهای جریان متناوب AC (کنترل دور از طریق فرکانس)
 - نیاز هر محور به درایو و سروو موتور برای حرکت بال اسکرو (پیچ ساچمهای)

- سیستمهای انتقال قدرت
 - پیچ ساچمهای
- رزوههای نیمدایره به جای ذوزنقه و قرارگیری ساچمهها (حرکت غلتشی و کاهش اصطکاک)
 - سیستم rack & pinion (استفاده در طولهای بلند)
 - انکودرها
 - انکودرهای مطلق
 - انکودرهای نسبی (پرکاربرد)
 - انکودرهای نسبی خطی (خط کش)
 - انکودرهای نسبی دورانی
 - انکودرهای نسبی موقع روشن شدن ماشین نیاز به رفرنس شدن دارند
- تعیین موقعیت و فیدبک در انکودر های نسبی خطی با تغییر ولتاژ حاصل از فوتوسل
 - خطای کمتر، گرانی، احتمال کثیفی در خطکشها
- احتمال خطا به علت لقی و (backlash)، جمع و جورتر بودن در انکودر های دورانی
 - تواناییهای بیشتر ماشینهای تراش CNC
 - امکان فرزکاری و سوراخکاری خارج از مرکز
 - ماشینهای تراش دارای ۲ تارت (ابزار گیر) و یا ۲ اسپیندل
 - تواناییهای بیشتر ماشینهای فرز CNC
 - تعویض ابزار خودکار (ماشین سنتر)
- استفاده از میز و یا هدگردان با ۴ محور یا ۵ محور (۳ محور خطی و ۲ محور دورانی)
 - تعویض پالت (میز) خودکار
 - اندازهگیری ابزار و یا قطعه کار
 - هدف از افزودن یک محور گردان به محورهای خطی
 - دسترسی به وجوه مختلف قطعه کار

- امکان ماشینکاری مسیرهای پیچیده
 - زمینه هندسی برنامهنویسی CNC
 - معرفی دستگاه مختصات کارتزین
 - دستگاه مختصات سهبعدی
- روش شناسایی محورهای یک فرز عمودی
- برنامەنويسى براى ابزار در فرز سى ان سى
- جهت مثبت محور نفوذ ابزار Z به سمت دور شدن از قطعه کار میباشد
- جهت مثبت محور منطبق بر طول میز (x) از چپ به راست اپراتور میباشد
 - روش شناسایی محورهای یک بورینگ افقی و فرز دروازهای
 - انواع مدلهای ماشین تراش سی ان سی
 - تراش flatbed (شبیه ماشین تراش دستی)
- ماشین شیبدار یا slant bed مناسب برای قطعات با قطر متوسط و ارتفاع بلند
- ماشین عمودی (vertical (carousel مناسب برای قطعه با قطر کم و ارتفاع زیاد
 - روش شناسایی و نامگذاری محورهای ماشین تراش سی ان سی
 - نامگذاری محورهای گردان
 - نقاط مرجع در ماشینهای سی ان سی
 - ثابت بودن نقطه مرجع ماشین (نمایش موقعیت ابزار نسبت به این نقطه روی مانیتور)
 - متغیر بودن نقطه مرجع قطعه کار
 - نقطه مرجع ابزارگیر
 - نقطه مرجع ابزار
 - استفادہ از فایلھای work offset
- استفاده از دستورات tool offset و zero offset برای نقاط مرجع ابزار و ابزارگیر
 - الزامی بودن تعیین نقطه رفرنس در انکودر های نسبی

فصل دوم

- مراحل آماده به کار کردن ماشین سی ان سی
 - آمادهسازی ماشین جهت رفرنس شدن
 - به ترتیب بودن رفرنس کردن محورها
- انتخاب محور و تعیین جهت مثبت یا منفی برای رفرنس شدن
 - نحوه کار کردن دستی با ماشین فرز سی ان سی (jog mode)
 - معرفی سیستم کنترل fanuc
 - معرفی پنل کنترل ماشین
- وجود کلیدهایی خالی جهت تعریف برنامه جدید و دلخواه PLC
- معرفی ماشین تراش CNC دو محور با سیستم کنترل siemens (به کمک شبیهساز)
 - معرفی کلی سیستم کنترل siemens
 - آشنایی با محیطهای مختلف در نرمافزار کنترل siemens
 - کارہای اجرایی در محیط machining
 - تنظیمات در محیط parameter
 - محيط برنامەنويسى
 - اتصالات جانبی به کمک محیط services
 - عیبیابی در محیط diagnosis (کمک به تعمیر و نگهداری)
 - قرار دادن قطعه خام با ابعاد دلخواه در ماژول workpiece setup
 - قرار دادن ابزار در انبار چرخشی ابزار با کلید (ماژول) tool management
 - برنامەنویسی (programming) برای ماشین تراش و فرزCNC
 - ساختار یک برنامه جهت ماشینکاری
 - دستورالعملها
 - اطلاعات ابزار

- اطلاعات هندسی
- نامگذاری برنامه CNC به کمک part program
- معرفی ساختار و قالب برنامه دو کنترلر پرکاربرد در ایران (sinumerik) زیمنس و (fanuc)
 - نحوه عنوان گذاشتن در برنامه
 - معرفی کدهای پایان برنامه در کنترلر زیمنس (M17, M02, M30)
 - معرفی کدهای پایان برنامه در کنترلر فانوک (M99, M02, M30)
 - تشريح بدنه اصلى قالب برنامه CNC
 - تعريف word & block وابسته به نوع كنترلر
 - استفاده از استاندارد DIN/ISO برای برنامه در کنترلر فانوک
 - انواع دستورها در برنامهنویسی
 - دستورهای اصلی (تدارکاتی) G code
 - دستورهای متفرقه M code
 - عملیات سوئیچینگ (کارہای دوحالته) با M code
 - دستورهای کمکی F, D, T, S و...
 - دو شکل دستورهای اصلی G code ها (پایدار و ناپایدار)
 - فلسفه وجودی گروهبندی G code ها
 - موقعیتیابی با گروه GO
 - میان یابی خطی با گروه G1
 - میان یابی دایرهای با گروههای G2 & G3
 - ممنوعیت آوردن دو دستور همگروه در یک بلوک برنامه

فصل سوم

- کدهای اصلی G code ها
- گروه ۱ مدیریت حرکت محورها (G0, G1,G2,G3)
 - sinumerik و fanuc
 - نحوه اندازهگذاری در زمان برنامهنویسی
 - مختصات مطلق
 - مختصات نسبی
 - استفاده از کد G90 برای مختصات مطلق
 - استفاده از کد G91 برای مختصات نسبی
- مثالی از برنامهنویسی با استفاده از مختصات نسبی و مطلق
- موارد و شرایط الزام برنامهنویس به استفاده از مختصات مطلق
 - اولین موقعیت (مختصات) در برنامه
 - اهمیت اولین موقعیت بعد از هر تعویض ابزار
 - اهمیت اولین موقعیت بعد از هر تغییر نقطه صفر قطعه کار
- استفاده از نقشهخوانی برای تشخیص کاربرد مختصات نسبی یا مطلق در شرایط عمومی
 - کاهش احتمال خطا با استفاده از مختصات نسبی
 - ارجحیت مختصات مطلق نسبت به مختصات نسبی
 - کمک نرمافزارهای طراحی (CAD) برای انجام دقیق و سریع محاسبات
- تفاوت دستورهای مختصات نسبی و مطلق در کنترلهای sinumerik & fanuc
 - ناسازگاری دستورات همگروه (G91 & G90) نباید در یک خط باشند
- اضافه شدن مختصات مطلق و نسبی ناپایدار در سیستمهای جدید و دیجیتالی زیمنس

- عدم استفاده از کدهای G90 و G91 برای مختصات نسبی و مطلق در سیستم فانوک
 - معرفی کدG1
 - میان یابی خطی با کدG1
 - حرکت خطی همزمان با براده برداری و سایر عملیات
 - دستور سرعت پیشروی (F (mm/min)
 - تعیین وضعیت اسپیندل
 - روشن یا خاموش بودن موتور اسپیندل
 - جهت چرخش اسپیندل
 - کدهای M3 & M4 اسپیندل روشن
 - کد M5 اسپیندل خاموش
 - اهمیت جهت چرخش اسپیندل وابسته به نوع براده برداری و ابزار مورداستفاده
 - عدم تأثیر ترتیب دستورات برنامهنویسی در هر بلوک
 - تعیین اولویت دستورات بر اساس منطق سازنده ماشین CNC
 - تعیین سرعت اسپیندل با دستور (rpm) S
 - سرعت و پیشروی در ماشینهای تراش سی ان سی
 - تعیین سرعت برش توسط شرکت سازنده ابزار
 - عوامل مؤثر بر سرعت برش
 - جنس قطعه کار
 - جنس ابزار
 - شرایط عملیات (خشن تراشی یا پرداختکاری)
 - رابطه سرعت برش با سرعت اسپیندل
 - پیچیدهتر بودن روابط سرعت در ماشین تراش نسبت به ماشین فرز
- کد G96 جهت ثابت نگهداشتن سرعت برش (با تغییرات سرعت اسپیندل) در ماشین تراش

- کد G97 جهت ثابت نگهداشتن سرعت دوران اسپیندل در ماشین تراش
 - روابط سرعت پیشروی برای ماشین فرز
 - روابط سرعت پیشروی برای ماشین تراش CNC
 - استفاده از کد G94 برای مستقل بودن سرعت پیشروی از اسپیندل
 - استفاده از کد G95 برای وابستگی سرعت پیشروی به دور اسپیندل
- جدول مقایسه کدهای مختلف سیستمهای کنترلر مختلف (زیمنس، فانوک و ...) برای عملیات متفاوت براده برداری
 - کد محدودکننده سرعت دوران اسپیندل همراه با G96
 - مثال کاربردی عملیاتی و جمعبندی برخی کدهای برنامهنویسی
 - کدهای تعیینکننده صفحات کاری (G17, G18, G19)
 - کدهای دستوری تعیین واحد متریک یا اینچی (G71, G20 و ...)
 - کدهای دستوری تعیین ابزار T
 - کدهای دستوری تغییر ابزار (M6 M6)
 - کدهای دستوری فعالیت مایع خنککننده M8, M9 (M8, E
 - دستور تأخیر زمانی) G4 تعیین زمان مکث با (F, X, P)

فصل چهارم

- سایر عملیات اپراتوری
- اجرای برنامه روی شبیهساز ماشین CNC
- شبیهسازی به کمک نرمافزار (SSCNC) (swan soft CNC)
 - فرز سی ان سی سه محوره با تعویض ابزار
- کار اولیه رفرنس کردن محورها (اولویت محور Z جهت دور شدن ابزار)
- در برخی ماشینهای سی ان سی رفرنس شدن اتوماتیک نیز وجود دارد
- تعریف ابزار جدید یا انتخاب ابزار از ماژول (دستور) tool management
 - متفاوت بودن چیدمان ابزار در ماشین سنتر
 - هنگام نوشتن برنامه در حالت MDA ماشین باید در حالت Reset باشد
 - اجرای برنامه با cycle start
- تعريف ابعاد قطعه خام جديد يا انتخاب قطعه در دكمه (ماژول) workpiece
 - تعریف اطلاعات و تنظیمات ابزار با گزینه tool offset
- اطلاعات، محاسبات و راهحلهای هندسی انتقال نقاط صفر (قطعه، میز، ماشین و ابزار)
 - تفاوت فراخوانی ابزار در ماشینهای مختلف CNC
 - توضيحات تئورى گونيا كردن (ساعت كردن) براى قطعات با دقت بالا
 - بحث هندسی (Zero offset (work offset در ماشین فرز سی ان سی
 - استفاده از سیستم اندازهگیری ماشین برای اطمینان بیشتر در Zero offset
 - ابزارهای کمکی و ملاحظات مماس کردن ابزار بر قطعه کار
 - محاسبات صفر قرار دادن مرکز سوراخ درون قطعه
 - آماده کردن محیط برنامهنویسی با دکمه program manager
 - نحوه کپی کردن برنامه قبلی
 - اجرای خط به خط برنامه (در کنترلر زیمنس) بافرمان اپراتور در گزینه single block

- اجرای کامل و اتوماتیک برنامه (در کنترلر زیمنس) با گزینه auto
- معرفی کاربردهای صفحهکلید در ماشین تراش سی ان سی (کنترل فانوک)
- سختیهای تداخل پتانسیومتر های سرعت دوران و پیشروی در کنترلر فانوک
 - حالات مختلف گزینه موقعیتیابی
 - موقعیت مطلق نسبت به نقطه صفر قطعه کار
 - کاربرد کم موقعیتیابی نسبی
- اطلاعات مفید حین اجرای برنامه (مانند G code فعال، سطر برنامه در حال اجرا، موقعیت محورها و...) در گزینه check حالت prog
 - تفاوت فانوک و زیمنس در معرفی اطلاعات ابزار (شعاع و طول)
 - تفاوت کاربردهای Insert & Input
 - عدم پاک کردن و اصلاح کاراکترهای تکی در گزینه alter
 - چک کردن جهت چرخش بر اساس کدهای M3 M4 در ابتدای کار
 - رعایت قرارگیری فکها برای گرفتن داخلی یا خارجی قطعه
 - پیدا کردن نقاط صفر (offset گیری)
- چک کردن تطابق شماره برنامه با برنامه اجرایی موردنظر قبل از فشردن دکمه Cycle start

فصل پنجم

- برنامهنویسی میان یابی دایرهای (circular interpolation)
 - حرکت ابزار روی کمانی از دایره (پیروی از معادله دایره)
 - روشهای تعریف دایره و کمان
 - ۲ روش برای تعریف دایره و کمان در کنترلر زیمنس
 - ۲ روش اصلی تعریف کمان و دایره
 - روش تعریف مختصات مرکز
 - روش تعریف شعاع کمان
 - کد G2 حرکت دایرهای ساعتگرد (CW)
 - کد G3 حرکت دایرهای پادساعتگرد (CCW)
- تعیین مکان ناظر در سمت مثبت محور سوم صفحه کاری برای تعیین جهت (G2 یا G3)
 - تعیین اولویت محورها در صفحات کاری مختلف
 - تعیین مجدد G3 حرکت دایرهای از جهت مثبت محور اول صفحه کاری به سمت جهت مثبت محور دوم
 - لزوم اجرای تعیین جهت حرکت دایرهای در ناحیه اول مثلثاتی
 - شکل کلی دستور تعریف دایره به کمک تعریف مختصات مرکز
 - شکل کلی دستور تعریف دایره به کمک تعریف شعاع کمان
- مثالی از برنامهنویسی تعریف دایره به کمک تعریف مختصات مرکز در ماشین فرز CNC
 - تفاوت کنترلر فانوک و زیمنس در شکل کلی تعریف دایره به کمک شعاع کمان
 - مثالی عملیاتی از اجرای میان یابی دایرهای با کمک نرمافزار شبیهسازی sinutrain
 - جبران ابعادی ابزار
 - کدهای G40, G41, G42 برای جبران شعاع ابزار

- اعمال کدهای جبران شعاع ابزار ماشین فرز در خارج از کانتور (مسیر و لبه شکل موردنظر)
 - جبران شعاع ابزار در ماشین تراش
 - نکات جبران ابعادی ابزار برای شیارزنی

فصل ششم

- مباحث تکمیلی میان یابی دایرهای (Circular interpolation)
 - مرور سه روش اصلی میان یابی دایرهای
 - ادامه ۲ روش برای تعریف دایره و کمان در کنترلر زیمنس
- روش چهارم میان یابی دایرهای در صورت وجود مختصات قطبی نقطه پایان کمان (به کمک G2/G3)
 - تعریف دستگاه مختصات قطبی(Polar Coordinate System)
 - اطلاعات پیشنیاز استفاده از دستگاه مختصات قطبی
 - داشتن دستگاه مختصات کارتزین
 - داشتن مختصان نقطه قطب
 - داشتن شعاع قطبی
 - داشتن زاویه قطبی (نسبت به جهت + محور اول صفحه کاری)
 - نحوه تعريف مختصات قطب
 - ۳ روش تعریف مختصات قطب در کنترلر زیمنس
 - ۱ استفاده از کد G110 (نسبت به موقعیت فعلی ابزار)
 - ۲ -استفاده از کد G111 (تعریف قطب نسبت به نقطه صفر قطعه کار)
 - ۳ استفاده از کد G112 (تعریف قطب نسبت به قطب قبلی)
 - تفاوت نایایداری کدهای تعریف قطب با کد G4
 - شرایط استفاده از کد G2,G3 با مختصات قطبی
 - قطب مرکز دایره (کمان) باشد
 - شعاع قطبی همان شعاع دایره (کمان) باشد
 - مثالی از برنامهنویسی حرکت دایرهای با مختصات قطبی
 - روش پنجم میانیابی دایرهای

- روش پنجم میان یابی دایرهای به کمک زاویه مرکزی کمان علاوه بر مختصات مرکز
 کمان و کد G2/G3
 - ساختار برنامه در صورت داشتن زاویه مرکزی کمان و مختصات مرکز کمان
- روش ششم میان یابی دایرهای به کمک زاویه مرکزی کمان علاوه بر مختصات نقطه پایان و کد G2/G3
- شکل کلی ساختار برنامه در صورت داشتن زاویه مرکزی کمان و مختصات نقطه پایان
 - روش هفتم (آخر) میان یابی دایرهای
 - روش کاربردی میان یابی به کمک نقطه میانی و نقطه پایان کمان (CIP)
 - شکل کلی ساختار برنامه دستور CIP
 - جمعبندی روشهای برنامهنویسی
 - میان یابی دایرهای
 - روش میان یابی حلقوی (Helical interpolation)
 - نیاز به امکانات بیشتر در میان یابی حلقوی نسبت به خطی و دایرهای
 - لزوم حركت همزمان سه محور توسط سيستم كنترلر
 - نحوه تعریف میان یابی حلقوی در کنترلر زیمنس
 - دستور Turn برای تعداد چرخش و گام
 - اهمیت چک کردن تفاوت نقطه شروع و پایان در دستور TURN
 - تمرین برنامههای میان یابی دایرهای و حلقوی در شبیهساز
 - استفاده از دستور مختصات قطبی
 - تعریف قطب نسبت به نقطه شروع ابزار با کد (G110)
 - تعریف شعاع قطبی با RP
 - تعریف زاویه قطبی با AP
 - اجرای نیمدایره با مختصات قطبی
 - استفاده از دستور زاویه مرکزی برای اجرای کمان

- اجرای کمان با استفاده از دستور CIP
 - میان یابی با کمک نقطه واسطه
- اجرای کمان در فضای سهبعدی با دستور (CIPتغییر هر سه محور)

فصل هفتم

- تمرین برنامهنویسی میان یابی حلقوی در شبیهساز
- استفاده از زیر برنامهها جهت فراخوانی و انعطاف برنامهنویسی
 - مرور دو نوع برنامه کنترلر زیمنس
 - part program برنامه اصلی
 - sub program
 - شباهت اصول و ضوابط دو برنامه
 - تفاوت در پسوند فایل برنامه جهت تشخیص برنامهنویس
 - MPF پسوند برنامه اصلی
 - SPF پسوند برنامه فرعی
- فراخوانی زیر برنامهها (SPF) در برنامه اصلی جهت عملیات تکراری
 - نحوه ایجاد زیر برنامه
 - مزیتهای افزودن برنامههای فرعی و اصلی در پوشه قطعه کار
- تعریف برنامههای عمومی قطعات (مانند پرداختکاری) در MPF و SPF
- افزودن برنامههای فرعی و اصلی در یوشه قطعه کار WPD جهت قطعات یرتیراژ
 - زیر برنامهها (Subroutine/Subprogram)
 - نحوه فراخوانی زیر برنامه (SPF) در برنامه اصلی (MPF)
 - Nesting فراخوانی یک زیر برنامه از داخل یک زیر برنامه دیگر
 - محدودیت مراحل (Level) در Nesting به ۱۱ مرحله
 - دستور P جهت تعیین تعداد تکرار زیربرنامه مشابه (turn)
 - خطا بودن ایجاد حلقههای نامتناهی در فراخوانی زیرمجموعهها
 - نكات يوشه قطعه كار (WKS.WPD)
 - تمرین فراخوانی زیر برنامهها و تکرار آنها

- چک کردن ویژگیهای کانتور اجرایی در نرمافزار NX
 - تعریف ابزار فرز انگشتی
 - نوشتن دستورات کلی در برنامه اصلی
 - ایجاد یک زیر برنامه جدید برای ایجاد کانتور
 - جبران شعاع ابزار با کدG41
- تعریف بلوک مستطیلی و تعیین ابعاد آن بهعنوان قطعه کار خام
 - مشاهده شبیهسازی شکل کلی کار
 - ادامه تمرین شبیهسازی
 - کنترل تعداد تکرار زیر برنامهها در شبیهسازی
- ماژول Open further program مشاهده و کنترل دو برنامه در کنار هم
 - اصلاح برنامه با موضوع Nesting
- اجرای دستور OFFN جهت کنترل فاصله ابزار با شکل نهایی و جبران ابعادی ابزار
 - ایجاد فیلت های لازم با کد RND
 - اصلاح ابعاد شروع اجرای کانتور

فصل هشتم

- قابها (Frame) در سیستم کنترل زیمنس
- ۴ جنبه تفاوت تعریف قاب جدید قطعه کار (WCS) نسبت به قاب اصلی ماشین CNC
 (ثابت بودن MCS)
 - انتقال موقعیت صفر قاب نسبت به صفر قاب ماشین
 - چرخش قاب حول یک یا چند محور
 - قرینهسازی
 - مقياس
 - ۲ روش تعریف قابها در سیستم کنترل زیمنس
 - قابهای قابل تنظیم ذخیره مشخصات هندسی قاب در حافظه ماشین (مانند Zero offset)
 - قابھای قابلبرنامەریزی
- کدهای ذخیره مشخصات هندسی قابهای قابل تنظیم در ۴ جنبه ,G57, G56, G54)
 G55)
 - محلی (Local) بودن کد قابهای قابلبرنامهریزی
 - ترکیب قابهای قابلبرنامهریزی و قابل تنظیم
 - تأثیر قابهای قابل تنظیم و قابلبرنامهریزی روی یکدیگر
 - کاربرد قابهای متعدد
- شبیهسازی (sinutrain) برنامه ترکیب قابهای قابل تنظیم و قابهای قابلبرنامهریزی
 - مشاهده مختصات همه کدها در ماژول Overview در OFFSET
 - در نظر گرفتن مختصات ماشین بهعنوان قاب در صورت صفر ماندن کدهای G54/55/56/57
 - تعريف ابزار موردنياز

- تعریف قطعه خام در زیر برنامه
- جابجایی کانتور با انتقال نقطه صفر به کمک کد TRANS
- اجرای قطعات تکراری در موقعیتهای مختلف به کمک کد TRANS
- مشاهده تغییرات محورها و نمایش بلوکهای برنامه در محیط اپراتوری شبیهساز
 - مشاهده تغییرات در محاسبات با انجام تغییرات در ماژول TOOL OFFSET
 - قاب چرخش (Rotation frame)
 - تعریف قاب چرخش با دستور کتابخانهای ROT/A ROT
 - ۲ روش اصلی قاب چرخش
 - ۱-چرخش در صفحه (کاربردی)
 - ۲ -چرخش در فضا (جامع و کامل)
 - دستور RPL چرخش در صفحه کاری فعال (عدم نیاز به تعیین صفحه)
 - چرخش بر مبنای نقطه صفر قطعه کار
 - ساختار کلی دستور چرخش در فضا
 - نحوه تقدم و تأخر محورها در دستور چرخش در فضا
 - کاربرد دستور چرخش قاب در صفحه
 - انجام ماشینکاریهای تکراری در صفحه (مانند الگوهای دایرهای)
 - کاربرد دستور چرخش قاب در فضا
 - دستور Mirror (قرینهسازی)
 - نقطه صفر مبدأ مختصات مبناى قرينهسازى محورها
 - ساختار کلی دستور مقیاس (Scale) قاب
 - اهمیت مکان نقطه مبنا در دستور مقیاس
 - ضریب بودن مقیاسهای نسبی برای دستورات قبلی مقیاسهای برنامه
 - تناسب مقیاسهای نامساوی برای برنامهنویسی شکلهای نامتقارن (بیضی)
 - موارد عدم استفاده از دستورات Mirror و Scale در قابها

- پیچیدهتر شدن برنامهنویسی با دستور MIRROR به علت عدم پیوستگی
 - اهمیت تقارن شکل در استفاده از دستور مقیاس
 - کد G53 دستور پایه برای لغو همه دستورات قابها
- کد SUPA دستوری ناپایدار برای لغو دستورات خارجی قابها (اضافهشده از طرف PLC)
 - کد G500 برای لغو پایدار همه قابهای قابل تنظیم
 - تمرین شبیهسازی دستورات قاب
 - تعريف قطعه خام با ماژول Various + Blank
 - جابجایی قاب و مختصات با دستور TRANS
 - جرخش ساعت گرد نسبت به موقعیت قبلی با دستور (RPL=-35) AROT
 - جمع جبری چرخشها (با ترتیب) با دستور AROT
 - جابجایی نقطه دوران چرخش با کمک کدهای G1 & G2
 - ویرایش و حذف دستورات قبلی (خطوط بالاتر) با افزودن؛ یا ماژول CUT
- مقایسه تفاوت جابجایی محورها در WCS & MCS در صورت اجرای دستور چرخش قاب
 - قرینهسازی در هر ۴ ناحیه مثلثاتی با دستور AMIRROR
- تغییر اندازه و هندسه شکل موردنظر با مقیاسهای غیر یکسان با دستور ASCALE

فصل نهم

- دستور OFFN کاربردی برای عملیات تکراری
- کمک دستور OFFN به عدم استفاده از نرمافزار CAD/CAM
- کمک به جبران ابعادی ابزار توسط با دستور OFFN (مشابه عملیات OFFSET در نرمافزارهای CAD)
 - شبیه سازی عملیات تراشکاری قطعه آماده در نرمافزار NX) CAD/CAM (NX)
 - دستور LIMS جهت محدودیت سرعت اسپیندل
 - دستور کد G42 برای جبران شعاع ابزار در زیر برنامه SPF
 - تنظیم کدهای ابعادی برای عدم نزدیکی به فکهای ماشین تراش
- تفاوت کنترلر های CNC قدیمی و جدید در مختصات نسبی اختلاف شعاع یا اختلاف قطر
 - افزودن دستور OFFN قبل از کد G41/G42 برای کاهش بار وارده بر ابزار
 - افزودن CHAMFER بر مدل با کد CHR
 - افزودن FILLET بر مدل با کد RND
 - برنامەنویسی پارامتریک (Parametric Programming) کنترلرهای CNC
 - دو نوع اصلی برنامهنویسی مستقیم و غیرمستقیم
 - استفاده مستقیم مقادیر عددی در برنامهنویسی مستقیم
 - استفاده غیرمستقیم مقادیر عددی در قالب متغیرها (VARIABLE) در برنامهنویسی یارامتریک
 - R نماد متغیرها در کنترلر زیمنس (Register)
 - # نماد متغیرها در کنترلر فانوک
 - Q نماد متغیرها در کنترلر هایدن هاین (Hidenhain)
 - P نماد متغیرها در برخی کنترلر ها

- کاربردهای مختلف برنامهنویسی پارامتریک و کاهش حجم برنامه با آن
 - انواع متغیرها در کنترلر SINUMERIK 840D
 - ۱ متغیرهای حسابی (Arithmetic Var.)
 - ویژگیهای مختلف متغیرهای حسابی
- اختصاص بخشی از حافظه به نماد متغیرهای حسابی از (R0 تا R999)
 - مسیر نمایش پارامترها (R.Par./R.Var.) در نرمافزار SINUTRAIN
- قابلیت تغییر مقدار پارامترها در صورت تغییر محاسبات در هر جای برنامه
 - پوشش همه اعداد حقیقی توسط متغیرهای حسابی
 - پوشش همه آدرسها با مقادیر متغیرها به جز G, N
 - عمومی بودن پارامترهای R
 - ۲ -متغیرهای تعریفشده توسط برنامهنویس (User Defined Var.)
 - تعریف متغیرهای User Defined وابسته به نیاز حداقل ۲ کاراکتر
 - تعریف متغیر با دستور DEF
 - 5 تیپ اصلی User Defined ها
 - اعداد حقیقی
 - اعداد صحیح
 - کاراکتر (Char)
 - (String) رشتهای (String)
 - صفر و یک (Bool)
 - کاهش احتمال تداخل اطلاعات به کمک User Defined ها
 - محلی (Local) بودن عیب User Defined ها
 - قابلیت ترکیب متغیرهای حسابی و متغیرهای تعریفشده
 - ۳ -متغیرهای سیستمی (System Var.)
 - \$نماد متغیرهای سیستمی تعریفشده کنترلر زیمنس

- متغیرهای Read only مانند موقعیت هر محور، سرعت فعلی اسپیندل و...
 - ۴ -متغیرهای GUD
 - عمومی بودن متغیرهای GUD
 - متغیرهای حسابی (R parameter)
 - ثبت مقدار هر متغیر حسابی (R0 تا R999) در حافظه کنترلر
 - ۲ روش دادن مقدار به متغیرها
- ۱- دادن مقدار مشخص به متغیر در آدرس معینی از حافظه (R Parameter)
 - ۲- دادن مقدار مشخص به متغیر حسابی در برنامه اجرایی
 - امکان تعریف عملیات عبارت ریاضی به جای یک عدد
 - تشابه تقدم و تأخر عملیات ریاضی در ماشین حساب و کنترلر های جدید
 - اهمیت پرانتز در اولویت بندی عملیات ریاضی
 - سایر عملیات ریاضی اجرایی روی R پارامترها
 - قدر مطلق با کد + ABS یرانتز
 - جذر با کد + SQRT یرانتز
 - گرد کردن با کد ROUND
 - حذف بخش اعشاری با کد TRUNC
- محاسبه باقیمانده تقسیم دو عدد با کد MOD (کاربرد در سوراخکاری پلهای)
- کدهای محاسبات مثلثاتی R پارامترها (SIN, COS, TAN و معکوس آنها ARC
 - تفاوت جزئی کد ATAN2 در پرانتز عملیات
 - کد دستوری محاسبه لگاریتم LN
 - کد دستوری محاسبه معکوس لگاریتم EXP
 - مثال و تمرین شبیهسازی برنامهنویسی پارامتریک
 - تعریف برنامه نسبت به صفر ماشین
 - دستور LIMS جهت محدودیت سرعت اسپیندل

- کد G96 برای تثبیت سرعت اسپیندل
- تعریف پارامتریک ابعاد در فایل زیر برنامه
- تبدیل تکتک خطوط زیر برنامه قبلی با دستور OFFN به کدهای پارامتریک
 - استفاده از دستور TAN به جای اندازه مستقیم
 - ادامه تمرین شبیهسازی
 - اصلاح محاسبات مثلثاتی
 - کاهش تکرار برنامه کد OFFN با تعریف پارامترها
 - استفاده تناسبی از علامت تساوی در تعریف پارامترها
 - مشاهده تغییر R Parameter ها در اجرای اصلی برنامه
 - اجرای واقعی برنامه با ماژول Execute
 - مبحث تکرار بخشی از برنامه
 - تکرار بخشی از برنامه در همان برنامه اصلی به جای تکرار در زیر برنامه
 - دستور Repeat برای تکرار برنامهها در همان برنامه اصلی
 - تعریف برچسب یا Label
 - تفاوت برچسب با نام زیر برنامهها (استفاده از: در انتهای اسم)
 - بینام بودن برچسبها به جز End label:
 - استفاده از Label ها در ابتدای خط برنامه
 - عدم استفاده از دو label همنام در یک خط برنامه
 - کاربردهای مختلف label ها در برنامهنویسی پیشرفته
 - دستور RepeatB برای تکرار برنامه یک خط یا بلوک
- نحوه برنامهنویسی تکرار چند خط یا بلوک پشت سر هم (REPEAT LBL1 LBL2)
 - تعداد بیشتر تکرار چند خط یا بلوک با افزودن کد P به دستور REPEAT
 - کاربرد برچسب ENDLABEL در ترکیب با دستور REPEAT

- ترکیب دستور NESTING با REPEAT (اجرای دو REPEAT درون یکدیگر حلقههای تودرتو)
 - تمرین برنامهنویسی پارامتریک و دستور REPEAT در شبیهساز
 - ایجاد برنامه برای محیط ماشین فرز
 - کد DISR برای حرکت مماسی ابزار بر مسیر
 - نام DEP برای عمق نفوذ در هر مرحله (STEP DOWN)
 - کد RND برای اجرای فیلت
 - پایداری کد RNDM برای تکرار فیلت
 - اهمیت تعداد کد P در ترکیب با دستور REPEAT
 - کند تر بودن اجرا نسبت محاسبات در ماشینهای CNC
 - دستور STOPRE برای تناسب سرعت اجرای عملیات و محاسبات برنامهنویسی
 - اهمیت تقدم و تأخر دستور STOPRE در حلقههای برنامهنویسی
 - برنامەنویسی پارامتریک (پیشرفته) در کنترلر فانوک
 - نرمافزار SSCNC مناسب کارهای مقدماتی و اپراتوری در کنترلر فانوک
 - توضيحات پنل اپراتورى نرمافزار WinNC
 - صفحهنمایش مختصات
 - نمایش دستورات پایدار
 - H کد دستوری کمکی
 - OFFSET برای D
 - نمایش شماره برنامه فعال
 - نمایش بلوک برنامه در حال اجرا
 - مرور ماژولهای مشترک و کلی
- دکمههای ترکیبی جایگزین همراه با SHIFT یا ALT (جهت نمایش در صفحه اپراتوری)
 - 0 معرفی برنامهای که فعال است

- دکمههای منوی شبیهساز
- نمایش لیست برنامههای موجود در حافظه با دکمه O LIST
 - تفاوت عملکرد دو کلید ENTER
 - كليد كوچكتر ENTER عمليات NC START
 - کلید اعشار (.) عمل NC STOP
 - کلید عمل ریست
 - روشن بودن NUM LOCK در اکثر مواقع
 - نکات برنامەنویسی کنترلر فانوک
 - دور کردن محور Z (محور ابزار گیر) برای تعویض ابزاردستی
- کد G28 جهت جابجایی محور (W) Z به نقطه مرجع یا نقطه صفر
 - تعویض ابزار با دستور T1 M6
 - خواندن طول ابزار در کنترلر فانوک با ترکیب کدهای G43+H
 - شباهت کلی صفحه اطلاعات ابزار در اکثر مدلهای فانوک
 - تعریف طول (شعاع) هندسه ابزار و سایش (WEAR) آن
 - صفر بودن میزان سایش ابزار نو
- جمع جبری ابعاد هندسی (GEOM) و سایش (WEAR) در صورت فراخوانی ابزار
 - کدهای H و G43 برای طول هندسه ابزار و سایش آن
 - کدهای D, G41 و G42 برای شعاع هندسه ابزار و سایش آن
 - مقدم بودن ابعاد •••External بر ابعاد کد G54 در ماژول نقاط صفر قطعه کار
 - نمایش محیط گرافیکی شبیهساز با SHIFT+F7
 - ویرایش برنامه با ALT+F6
 - تعریف نقطه صفر با کد G54
 - تعریف صفحه کاری با کد G17
 - تعريف مختصات مطلق با كد G90

- تعریف سیستم مختصات متریک با کد G21
- تعریف مشخصات قطعه کار خام با کد G1902 (کد جدید کنترلر فانوک)
- چک کردن تفاوت اعداد اعشاری در ماشینهای مختلف دارای کنترلر فانوک
 - مرور مزایای استفاده از زیر برنامهها
 - امکان ایجاد یک پوشه مختص هر قطعه
 - M99 کد پایان زیر برنامه در کنترلر فانوک
 - کد M98 جهت فراخوانی زیر برنامهها
 - نحوه تكرار زير برنامهها با افزودن ارقام به كد P
 - عملیات NESTING در کنترلر فانوک
 - تفاوت جزئی کدهای جبران شعاع ابزار در کنترلر های زیمنس و فانوک
 - نوشتن زیر برنامه در فانوک
 - تفاوتهای ترتیبی و ویرایشی کدها در فانوک
- عدم استفاده از G90/91 و G1/2 همزمان در یک خط از زیر برنامه در بعضی از کنترلر های فانوک
- اهمیت استفاده از کدهای جبران شعاع ابزار در شرایط مرزی (هنگام ورود و خروج از کانتور)
 - ویرایش برنامه اصلی
 - تعریف قطعه خام در محیط گرافیکی با دکمه START در منو
 - مشخص کردن ابعاد قطعه کار خام
 - مشخص کردن مختصات نقطه صفر قطعه کار طبق نقشه
 - عدم اجرایی بودن کد G1902 (ابعاد قطعه)
 - دمایش بلوک اول برنامه قبل از اجرای شبیه سازی با دکمه REWIND
 - افزایش سرعت پیشروی جانبی در زیر برنامه
 - تکرار ۴ باره عملیات P210 با تبدیل آن به P040210

- تعریف برنامه پارامتری
- راحتی تغییر ابعاد با برنامهنویسی پارامتریک و متغیرها
 - تعریف متغیرها در کنترلر فانوک با # و =
- چک کردن محدودیتهای تعداد متغیرها با کنترلر فانوک و سازنده ماشین
 - توقف حالت شبیهسازی برای اصلاح برنامه یا افزودن متغیر
 - تعریف همه ابعاد طولی و شعاعی نقشه با متغیرها در یک زیر برنامه جدا
 - عملیات ریاضی در [] (در کنترلر فانوک)
 - یادداشتها در پرانتز ()
 - اولویت و تقدم [] بر () در کنترلر فانوک
 - جایگزینی برنامه اصلی با برنامه پارامتری
 - شروع برنامهنویسی فرز کانتور داخلی نقشه
- عدم قابلیت اجرای انتهای تیز کانتور با ابزار شعاعی (اجرا با اسپارک یا تخلیه الکتریکی)
 - در اختیار گرفتن همه جریان اجرای برنامهها
 - پرشهای شرطی و غیرشرطی (CONDITIONAL & UNCONDITIONAL JUMPS)
 - مرور برچسبها برای استفاده در پرشهای شرطی و غیرشرطی
 - داشتن علامت: در برچسب تنها تفاوت آن با نام برنامه
 - عدم نیاز به: در فراخوانی برچسب
 - دستور GOTO برای اجرای پرش (زیمنس)
 - پرش به جلو GOTOF M30 (انتهای برنامه)
 - پرش به عقب (ابتدای برنامه) GOTOB
 - پرش غیرشرطی
 - گذشتن از همه خطوط لازم و بلوکهای برنامه با پرش غیرشرطی
 - کاربرد پرش غیرشرطی برای تست یا گرم کردن ماشین
 - کاربرد پرش غیرشرطی برای برنامههای طولانی

- پرش شرطی
- وابستگی پرش به مثبت یا منفی بودن جواب (دو حالت) سؤال در یک خط برنامه
 - پرش به مسیر فرعی CASE BRANCHING
- کاربرد پرش شرطی و CASE BRANCHING در برنامه طولانی با فازهای متعدد (مانند پوسته گیربکس یا سر سیلندر)
- کاربرد CASE BRANCHING در تشخیص وسط برنامه بودن (در صورت خاموش شدن ماشین وسط کار)
 - کاربرد اصلی پرش شرطی با دستور IF
 - جملات شرطی (IF,END,ELSE)
 - تعريف جمله شرطى
 - دوحالته بودن محتوا یا جواب جمله شرطی (بله و خیر، و ۱، صحیح و غلط)
 - اجرای برنامه بلوکهای پس از ENDIF در صورت جواب مثبت (۱ یا صحیح) جمله شرطی (حذف بلوکهای یس از ELSE
 - اجرای برنامه بلوکهای پس از ELSE در صورت جواب منفی (۰ یا غلط) جمله شرطی
 - امکان خلاصه کردن برنامه با حذف ELSE
 - امکان خلاصه کردن برنامه با حذف ENDIF
 - مقایسه بین دو مقدار معین پیشنیاز تعریف جمله شرطی
 - نمایش شرط برقراری تساوی با ==
 - شرط نامساوی بودن <>
 - شرط بزرگتر بودن >
 - شرط بزرگتر یا مساوی >=
 - شرط کوچکتر بودن
 - شرط کوچکتر یا مساوی بودن <=
 - کاربرد برنامه شمارشگر در برنامهنویسی پارامتری

- تعریف متغیرهای برنامه شمارشگر
 - R1 متغیر شروع
 - R2 متغیر افزایش (کاهش) نمو
 - R3 متغیر مقدار نهایی
 - R4 متغیر مقدار فعلی (جاری)
- امکان ابتدا یا انتها بودن شرط برنامه شمارشگر
- استفاده از = بهعنوان تناسب متغیر مقدار فعلی
- شرط ادامه حلقه در ابتدای برنامه همراه با دستور GOTOF
- ایجاد یک حلقه بینهایت بهعنوان یک عبارت شرطی در برنامه (LOOP END LOOP)
 - توقف برنامه حلقه بىنهايت با فشردن دستى دكمه CYCLE STOP
 - تكرار يك حلقه به تعداد معين با دستور (FOR & END FOR)
- تكرار يک حلقه به تعداد معين با دستور WHILE & ENDWHILE (شرط ابتدای حلقه)
 - تكرار يك حلقه به تعداد معين با دستور REPEAT & UNTIL (شرط انتهاى حلقه)
 - اپراتورهای منطقی (LOGIC OP) برای ایجاد چند شرط (..., OR, AND, NOT).
 - نیاز به حصول دو شرط همزمان با AND
 - کفایت حصول یکی از دو شرط همزمان با OR
 - معکوس شدن جواب IF با NOT (تبدیل ۱ به ۰)
 - کار داشتن NOT فقط با یک موضوع
 - کاربرد دستور XOR (استثنا) برای ورودیهای PLC
 - تمرین برنامهنویسی دستور CASE BRANCHING
 - کاربردهای CASE BRANCHING
 - تعیین مسیر برنامهنویسی به کمک دستور CASE BRANCHING
- کاربرد CASE BRANCHING در فرزکاری، لیزر و پلاسما جهت ادامه برنامه از وسط کار در صورت خاموش یا ریست شدن

- نمایش پیام به اپراتور با دستور MSG در کنترلر زیمنس
- فاز خزینه کاری و جمعآوری و تمیزکاری برادهها (DEBURRING)
 - دلیل تناقض نمایش ابزار در OFFSET با ابزار در حال کار
- به ترتیب خواندن و محاسبه تکتک خطوط برنامه در ماشینهای قدیمی (NC)
- خواندن و محاسبه بلوکهای جلوتر برنامه در ماشینهای جدید (CNC) قابلیت LOOK AHEAD
- دستور STOPRE جهت جلوگیری از محاسبات بلوکهای خیلی جلو و همزمانی پردازش و عملیات ممانعت از (LOOK AHEAD)
 - مجزا بودن خط و بلوک STOPRE
 - استفاده از کد STOPRE قبل از بلوک هر R پارامتر
- استفاده از کد DEFAULT درصورتیکه هیچکدام از شروط CASE BRANCHING برقرار نشد
 - استفاده از دستور پرش غیرشرطی در تمرین
 - استفاده از حلقه و پرش شرطی برای تقسیم مراحل یک عمق با عدد اعشاری
 - جبران شعاع ابزار و ورود آرام ابزار با ترکیب کدهای G241 G41
 - استفاده از کد IF & ELSE در حلقه
 - خلاصهتر کردن برنامه با کد WHILE & ENDWHILE
 - اجرای برنامه مشابه با حلقه UNTIL •
 - نوشتن شرط ادامه حلقه در ابتدای برنامه WHILE
 - نوشتن شرط ادامه حلقه در انتهای برنامه UNTIL « ا
 - امکان انجام برنامهنویسی حلقهها در نرمافزارهای CAM
 - دلایل استفاده از نرمافزارهای شبیهساز به جای نرمافزارهای CAM
 - گرانتر بودن نرمافزارهای CAM نسبت به نرمافزارهای شبیهساز برنامهنویسی

- جایگزینی ابزارهای خاص و حرفهای و گران و نرمافزارهای CAM با برنامهنویسی پیشرفته پارامتری
 - حجم زیاد فایلهای خروجی نرمافزارهای CAM
 - عدم اجرای سطوح آزاد و بدون معادله ریاضی با برنامهنویسی پارامتریک

فصل دهم

- تمرین برنامهنویسی سوراخکاری عمیق و چندمرحلهای در کنترلر زیمنس
 - تعریف پارامتری برای رعایت فاصلهایمنی ابزار قبل از شروع عملیات
- وابستگی سایز براده و زمان انجام برنامه به تعریف پارامتر عمق هر مرحله
 - تعريف سوراخ عميق (سه برابر بودن طول نسبت قطر)
- برنامه سوراخکاری همراه با تخلیه براده (مناسب برادههای بلند و پیوسته و چسبنده مانند آلومینیوم و فولاد و تیتانیوم)
- برنامهنویسی مشابه یکی از سیکلهای آماده سیستم کنترلر زیمنس و ترکیب دو برنامه قبلی
- نحوه برنامهنویسی سیکلها (برنامههای آماده و ذخیرهشده در حافظه کنترلر زیمنس)
 - کاربرد سیکلها در برنامههای پرمصرف و حجیم
 - تفاوتهای مزایا و معایب سیکلهای کنترلر های مختلف (فانوک، زیمنس و هایدن هاین)
 - سیکلهای برقوزنی، قلاویزکاری و سوراخکاری در فرز کنترلر زیمنس
 - سیکلهای رزوه زنی، تراشکاری و شیارزنی در تراش کنترلر زیمنس
 - تهیه سیکلهای زیمنس در قالب زیر برنامه (سیکلهای استاندارد)
- غیرقابل تغییر بودن سیکلهای زیمنس (برنامههای قفلگذاری شده و فقط خواندنی)
 - برنامه CYCLE83 زیمنس برای سوراخکاری عمیق
 - قابلیت افزودن پارامترهای موردنیاز در برنامه سیکل ۸۳
 - باقی ماندن علامت, درون پرانتز سیکل در صورت حذف پارامتر
 - RTP, RFP متغیرهای تعریفشده برای اعداد اعشاری
 - SDIS متغیر تعریفشدہ اعداد حقیقی بدون علامت (+ یا -)
 - VARI متغیر تعریفشدہ اعداد صحیح

- AXN متغیر تعریفشده شماره محور
- ابزار کمکی و ساپورت متغیرهای سیکلهای آماده جهت یادآوری قابلیت هر متغیر
 - اطلاعات اولیه پارامترهای مشترک سیکلهای آماده
- متغیر RFP جهت ارتفاع مبنایی شروع به کار ابزار (موقعیت مطلق شروع روی محور Z)
 - متغیر SDIS جهت فاصلهایمنی از قطعه کار (نسبت به RFP)
 - متغیرهای مطلق (DP) و نسبی (DPR) تعریف عمق
 - عدم استفاده همزمان از DP و DPR
 - متغیرهای مطلق (FDEP) و نسبی (FDPR) تعریف مقدار عمق اولین مرحله
 - عدم استفاده همزمان از FDEP و FDPR
 - DAM متغیر کاهش عمق نفوذ مرحله جهت تناسب براده برداری
 - متغیرهای تعریف مکث زمانی ابزار (DTB,DTS)
 - مکث زمانی بر حسب ثانیه در متههای کوچک (تا قطر ۱۶ میلیمتر)
 - مکث زمانی بر حسب تعداد دور اسپیندل در متههای بزرگ
 - DTB زمان مکث در انتهای عملیات
 - DTS زمان مکث در ابتدای عملیات
- RTP متغیر مطلق (نسبت به صفر قطعه کار) تعریف شده برای سطح برگشت در پایان عملیات
- FRF متغیر تعریف نسبت اولین سرعت پیشروی (جهت جلوگیری از شکست یا کمانش مته)
 - VARI متغیر تعریف خروج کامل یا کوتاه مته (0/1)
 - AXN تشخیص محورها (X1، Y2، X3)
 - MDEP حداقل عمق اضافه شده در هر مرحله
 - VRT متغیر تعریف مقدار برگشت ابزار
 - ورود اطلاعات لازم قبل از شروع سیکل

- تعیین صفحه کاری (G17,G18,G19)
- تعیین و تعویض ابزار مناسب (T...D..M6)
 - سرعت اسپیندل
 - جهت چرخش اسپیندل (M3/M4)
- دستورات متفرقه لازم خنک کاری، مکش براده M8/M9/M11 و...
 - تعیین موقعیت مناسب محورهای X/Y/Z برای شروع عملیات
- حل مثال برنامهنویسی کاربردی برای استفاده از CYCLE83 سوراخکاری عمیق
 - رعایت ترتیب تقدم متغیرهای درون پرانتز برنامه CYCLE83
 - تخلیه براده با ۱ بودن VARI
 - شکستن براده با ۰ بودن VARI
 - ناپایداری دستورات برای سوراخهای بعدی
 - استفاده از مختصات نسبی ناپایدار به جای G91 در مثال
 - قلاویز کاری (TAPPING)
 - رزوه خارجی روی پیچها
 - رزوه داخلی درون مهرهها
 - قلاویزکاری یکی از راههای رزوه زدن داخلی
 - کوچکتر بودن قطر سوراخ از قطر ابزار قلاویز بهاندازه یک گام (حدودی)
 - گام رزوه مهمترین پارامتر اتصال پیچ و مهره
 - اهمیت یک اندازه بودن گام پیچ و مهره
 - تناسب عمق روزه و پخ پیچ با گام
- ایجاد یک گام با یک دور چرخش قلاویز در سوراخ (در صورت دقیق و تیز بودن قلاویز)
 - تفاوت قلاویزکاری دستی و ماشینی
 - آزادی عمل بیشتر در قلاویزکاری دستی
 - محاسبه دور اسپیندل بر اساس اطلاعات برشی ابزار

- رابطه و تناسب سرعت پیشروی با سرعت اسپیندل و گام رزوه
 - تجزیهوتحلیل حرکت و سرعت اسپیندل
- اهمیت دقت و تناسب سرعت اسپیندل با سرعت پیشروی در قلاویزکاری
- شکستن ابزار قلاویز کاری در صورت متناسب نبودن سرعت اسپیندل و سرعت پیشروی
 - قلاویز گیر (TAP HOLDER) در ماشینهای قدیمی برای ایجاد تناسب سرعتهای اسپیندل و پیشروی
 - مزایا و معایب قلاویز گیر کلاجدار (FLOATING TAPHOLDER)
 - تشابه مكانيزم قلاويز كلاج دار با فنر
 - راهحلهای نرمافزاری و سختافزاری مشکلات قلاویز کلاج دار در ماشینهای جدید CNC
 - تواناییهای قلاویزکاری صلب (RIGID TAPPING) در ماشینهای جدید CNC
 - اتصال قلاویز به محور اصلی ماشین در قلاویزکاری صلب
 - نصب انکودر زاویه سنج روی اسپیندل
 - ارسال پالس انکودر به) CNC هر پالس معادل چرخش ۱ درجهای اسپیندل(
 - کد دستوری G95 برای وابسته کردن پیشروی به سرعت اسپیندل (محور موردنظر تابعی از اسپیندل)
 - شروع قلاویز کاری قبل از رسیدن به سطح سوراخ جهت حل مشکل G برش در برنامهنویسی (معادل کد فاصله ایمنی SDIS در CYCLE83)
 - خطرات برنامه قلاویزکاری نسبت به سایر برنامهها (امکان شکستن قلاویز)
 - عدم دستکاری پتانسیومتر های اسپیندل و پیشروی حین عملیات قلاویزکاری
 - اهمیت تناسب سایز رزوه قلاویز و اندازه سوراخ برای جلوگیری از شکست ابزار قلاویز
 - اهمیت روان کاری چرب تر از حالت معمول (آب و صابون) هنگام قلاویزکاری به علت اصطکاک بالای سطوح درگیر

- ادامه قلاویزکاری به صورت دستی در صورت قطعی برق هنگام عملیات و نشکستن قلاویز درون سوراخ (به هم نخوردن رزوهها)
- حل مشکل عدم هماهنگی دندهها و ادامه قلاویزکاری با قابلیت ZERO MARK در انکودر زاویه سنج
 - مسر خطی قلاویزکاری با کد G63
 - کاربرد کم کد G63 به علت استفاده از سیکلهای قلاویزکاری
 - CYCLE84 برنامه تعریفشده قلاویزکاری در اکثر ماشینها (G84 در فانوک)
- RTP متغیر مطلق (نسبت به صفر قطعه کار) تعریف شده برای سطح برگشت در پایان عملیات
- متغیر RFP جهت ارتفاع مبنایی شروع به کار ابزار (موقعیت مطلق شروع روی محور Z)
 - متغیر SDIS جهت فاصلهایمنی از قطعه کار (نسبت به RFP) و بیشتر بودن آن در قلاویزکاری
 - DP عمق نهایی قلاویزکاری نسبت به صفحه مرجع (RFP) و صفر قطعه کار
 - ترجيح استفاده از DPR عمق نسبی قلاويزکاری (بدون علامت)
 - کاربرد کم DTB زمان مکث در انتهای عملیات قلاویزکاری
 - SDAC کد تعیین جهت چرخش ابزار قلاویز در انتهای عملیات قلاویزکاری
 - MPIT قطر پیچ بر اساس استانداردها (ذخیره استانداردهای معروف در حافظه کنترلر زیمنس)
 - PIT تعیین قطر پیچ در صورت نبودن در استانداردها
 - POSS موقعیت شروع اسپیندل (پیدا کردن زاویه دقیق با آزمونوخطا)
 - SST سرعت مسیر اسپیندل در مسیر رفت (مقدم بودن این کد بر سرعت تعریفشده قبل از سیکل)
 - SST1 سرعت اسپیندل در مسیر برگشت (درحالیکه رزوه ایجادشده)
- کمک علامت PIT به تعیین جهت (رزوه + راستگرد بودن M3 و چپگرد بودن M4)

- افزایش قابلیتها در ورژنهای جدید برخی از کنترلرها
 - قابلیت چند مرحله شدن CYCLE84 و تخلیه براده
 - امکان کاهش حجم برنامه در سیکلهای سوراخکاری
- فراخوانی برنامه سیکل به صورت پایدار جهت کاهش حجم برنامه با دستور MCALL
 - فراخوانی برنامه سیکل به صورت پایدار در الگوهای تکراری با دستور MCALL
- الگوی دایرهای برای نقاط مرکز سوراخها در عملیات سوراخکاری، قلاویزکاری، برقوکاری
 و...
 - سیکل HOLES2 برای تعریف نقاط الگوهای دایرهای (کاربردی برای سوراخکاری فلنجها)
 - پارامترهای HOLES2
- CPA مختصات مطلق مرکز دایره الگو نسبت به صفر قطعه کار روی محور اول صفحه
 کاری (X)
- CPO مختصات مطلق مرکز دایره الگو نسبت به صفر قطعه کار روی محور دوم صفحه
 کاری (Y)
 - RAD شعاع دایره الگو
 - STA1 زاویه شروع نسبت به محور اول
 - INDA زاویه مرکزی بین دو سوراخ متوالی
 - محاسبه زاویه مرکزی بین دو سوراخ متوالی بر عهده کنترلر در صورت INDAO
 - الگوی شبکهای (ماتریس دوبعدی) برای سوراخکاریها متوالی و منظم (GRID)
 - برنامه آماده CYCLE801 برای الگوی شبکهای GRID در کنترلر زیمنس
 - SPCA_ مختصات نقطه شروع الگوی شبکهای روی محور اول صفحه کاری
 - _SPCAO مختصات نقطه شروع الگوی شبکهای روی محور دوم صفحه کاری
 - STA1 زاویه سطوح شبکه با محور اول صفحه کاری
 - DIS1 فاصله بین ستونها

- DIS2 فاصله بین سطرها
 - NUM1 تعداد ستونها
 - NUM2 تعداد سطرها
- تفاوت ماشینهای ساده و پیشرفته فرز و تراش
- تفاوت صفحهنمایش ورژنهای مختلف کنترلر ها
- لیست سیکلهای مختلف در بخش برنامهنویسی (PROGRAM) منو
 - مشاهده و مرور دستورات مفصل زیر برنامه CYCLE83
 - تعریف برنامه جدید در قسمت PART PROGRAM
- لزوم ذخیره برنامه در هارددیسک کنترلر ها (به علت پاک شدن از حافظه موقت)
 - امکان تنظیم ذخیرہسازی خودکار برنامہھا
 - مشاهده اطلاعات ابزار با کلید F10 و پارامترها
 - نحوه تعریف ابزار جدید در ماژولTOOL OFFSET
 - شناخت نوع ابزار با رقم صدگان آنها (مانند ۱ در ۱۷۶ ابزار فرز)
 - معرفی انواع متههای سوراخکاری سری ۲۰۰
 - مشخص نمودن ویژگیهای هندسی ابزار
 - حالت DRILLING CENTERING برای سوراخهای ساده
 - تعیین پارامترهای مختلف RTP, RFP, SDIS, DP, DTB برای سوراخکاری ساده
 - جایگزینی DP با DPR با دکمه ATERNATIVE
 - پارامترهای لازم برای CYCLE83 در ماژول DEEP HOLE DRILLING
 - مرور شماتیک پارامترهای CYCLE83 روی شبیهساز
- موضوعی بودن (CHIPBREAKING OR STOCK REMOVAL) انتخاب نوع عملیات (VARI) به جای ۰ یا ۱
 - دکمه MODAL CALL برای تعیین پایداری دستور سیکل
 - اجرای شبیهسازی ۴ سوراخ با دستور ناپایدار

- انجام تنظيمات قطعه خام
- شناسایی ابزار با ماژولهای MATCH DATA & MATCH TOOLS
 - تنظیم سرعت شبیهسازی با دکمه OPTION
 - نحوه بزرگنمایی نقاط موردنظر قطعه
 - IPO سرعت اجرای عملیات
 - اصلاح برنامه حین شبیه سازی با PORGRAM CORRECT
- جابجایی فایل برنامههای پیشفرض با LOAD/ONLOAD جهت جلوگیری از پر شدن هارددیسک (HD) یا کنترلر عددی (NC)
 - شبیهسازی قلاویز کاری
 - تعریف ابزار قلاویز از سری ۲۰۰ با دکمه F10 و PARAMETR
 - قلاویزکاری همان سوراخهای ایجادشده با CYCLE83
 - تعیین پارامترهای مختلف RTP, RFP, SDIS, DP, DTB برای قلاویز کاری (با دکمه DRILLING از منوی افقی و دکمه TAPPING از منوی عمودی)
 - تعیین محور نفوذ ابزار AXIS
 - تعیین چپگرد یا راستگرد بودن رزوه با پارامتر SELECTION
 - انتخاب نوع سایز و استاندارد قلاویز (اینچی، متریک و...) در پارامتر TABLE
 - تعريف گام دلخواه (PIT) با انتخاب هيچ جدول (NONE) استاندارد
 - تعیین پارامتر موقعیت و زاویه اسپیندل POSS
 - تعیین سرعت رفتوبرگشت اسپیندل
 - انتخاب نوع مراحل قلاویزکاری INFEED
 - تغییر علامت اندازه گام با تغییر جهت (چپگرد یا راستگرد) قلاویزکاری
 - چک کردن و اطمینان از برنامه قلاویزکاری قبل از شروع عملیات
 - نمایان شدن عیوب بزرگ در شبیهسازی (مانند علامت یا مقدار اشتباه عمق قلاویز کاری)

- عدم نمایش عیوب کوچک و ریزهکاریهای تجربی در شبیهساز
- مشاهده تفاوت (CHIPBREAKING OR STOCK REMOVAL) انتخاب نوع عمليات (VARI) در شبيه ساز
- مثال برنامهنویسی الگوی شبکهای (ماتریس دوبعدی) (GRID) و الگوی دایرهای برای سوراخکاریهای متوالی و منظم
 - انجام پخ با مته خزینه (مخروطی شکل)
 - انتخاب ابزارهای مناسب کار در شبیهساز
 - انتخاب مته مرغک (CENTER DRILL) از سری ۲۰۰
 - انتخاب مته خزینه (COUNTER SINK) از سری ۲۰۰
 - انتخاب مته مارپیچ (TWIST DRILL) از سری ۲۰۰
 - ایجاد برنامه جدید برای حل مثال برنامهنویسی الگوی شبکهای (ماتریس دوبعدی)
 (GRID)و الگوی دایرهای برای سوراخکاریهای متوالی و منظم
 - برنامهنویسی سوراخکاری منظم یک صفحه با ترکیب دستورات شرطی و فازبندی (CASE BRANCHING)
 - استفاده از دستور پایدار MCALL برای سوراخکاری متعدد
 - ماژول HOLE PATTERN POSITION برای اجرای دستور پایدار CYCLE82 در نقاط مختلف
 - تعیین مقدار پارامترهای مختلف الگو از روی نقشه
 - تعیین پارامترهای SPCA,SPCO,STA1, DIS1,DIS2,NUM1,NUM2
 - تعیین ابعاد قطعه خام با در نظر گرفتن صفر قطعه کار در وسط
 - مشاهده شبیهسازی الگوی سوراخکاری با برنامه آماده CYCLE801
- اجرای سوراخکاری با الگوی دایرهای در دو ناحیه مثلثاتی با برنامه مسیر و مختصات آماده HOLES2
 - تغییر ابزار و تغییر سرعت پیشروی و اسپیندل در فاز جدید برنامه

- فراخوانی پایدار دستور 83 CYCLE و تعیین پارامترهای آن
- مشاهده و اجرای برنامه شبیهسازی سوراخکاری الگوی دایرهای و شبکهای روی یک
 صفحه
 - اجرای همزمان الگوهای دایرهای و شبکهای با قطرهای متفاوت
- تغییر ابزار و تغییر سرعت پیشروی و اسپیندل در فاز جدید برنامه برای انجام خزینه
 کاری با فراخوانی پایدار دستور CYCLE82
 - تکرار برنامه بلوکهای مشابه قبلی با برچسبگذاری و کد REPEAT
 - اجرای برنامه قلاویزکاری (TAPPING) در آخرین فاز برنامه
 - تعیین پارامترهای قلاویزکاری
 - اجرای قلاویزکاری با فراخوانی پایدار دستور CYCLE84
 - نمایش زمان خالص و تجمیعی عملیات و برنامهها
 - برچسبگذاری فازهای برنامه قبلی
 - افزودن پرش شرطی و CASE BRANCHING به برنامه قبلی (الگوی سوراخکاری شبکهای و دایرهای)
- تعریف متغیر برای هر فاز جهت جستجوی سادهتر در صورت قطع برنامه وسط کار
- اجرای دستور STOPRE برای هر فاز جهت هماهنگی سرعت پردازش و انجام عملیات
 - تعریف دستور DEFAULT در صورت خطای همه فازها
- امکان نوشتن هر جمله در پیامهای MSG جهت تفهیم راحت اپراتور (حتی جملات فینگلیش)
 - توقف اجرای برنامه با کد M0 در صورت نیاز
 - بازگشت به فاز اول برنامه در صورت صحیح بودن همه برنامه
- عدم استفاده از دستور DEFAULT در خط اول برنامه در صورت طولانی شدن تعریف فازها (استفاده در خط دوم یا سوم)
 - مرتب کردن بلوکهای برنامه با ماژول RENUMBER در منو

- چک کردن شماره متغیرها (R VARIABLE) با برنامه و اصلاح بهصورت دستی در صورت نیاز
- اجرای برنامه جدا از محیط شبیهسازی با ترکیب دکمههای CTRL+ALT+SHIFT+4
 جهت چک کردن موقعیت ابزار و تغییر R پارامترها
 - افزایش سطح اتوماسیون برنامه به کمک CASE BARANCHING
 - سیکلهای فرزکاری
 - ۳ سیکل مهم و پرکاربرد فرزکاری
 - سیکل کف تراشی (FACE MILLING) با فرز کف تراش (T50)
 - فرز انگشتی (T50 & T51) برای فرزکاری حفرهها (POCKET MILLING)
 - فرز انگشتی با قطر بزرگتر (16mm) جهت خشن تراشی
 - فرز انگشتی با قطر کوچکتر (8mm) جهت پرداختکاری (FINISHING)
 - مقایسه برنامهنویسی با نرمافزار CAM شبیهساز زیمنس (G CODE نویسی)
 - ویرایش لیست ابزارها و تعریف ابزار جدید
 - انتخاب فرزها از لیست و سری ۱۰۰
 - تعیین طول و شعاع هر سه ابزار انتخابشده (تعیین سایش در صورت نیاز)
- انتخاب سیکل کف تراشی (FACE MILLING) از منو عمودی پس از انتخابMILLING
 از منو افقی
 - تعیین پارامترهای مختلف کف تراشی طبق نقشه (نقشه روی تخته)
 - انتخاب محور فرزکاری در جهت محوری که طول بلندتری دارد
 - تعیین ابعاد قطعه خام با در نظر گرفتن صفر قطعه کار قبل از شروع شبیهسازی
- اصلاح ابعاد ابزار و پارامتر MIDA (میزان نفوذ در هر مرحله) جهت انجام صحیح کف تراشی (خشن تراشی)
- استفاده از دکمههای MATCH DATA و MATCH TOOLS جهت بهتر خواندن ابزار در شبیهسازی

- تغییر محور حرکت ابزار در شبیهسازی با تغییر به حرکت زیگزاگی
- تغییر پارامترهای فرز کف تراشی متناسب با پرداختکاری (FINISHING) پس از خشن تراشی
 - انجام عملیات فرز و حفره تراشی استوانهای با دکمه (ماژول) CIRCULAR POCKET
 - تعیین پارامترهای حفره تراشی
 - صفر شدن ابعاد صفحه مرجع (RFP) پس از خشن تراشی
 - تعیین شعاع حفرہ در پارامتر PRAD
 - تعیین مختصات مرکز حفرہ روی دو محور مختصات (PA & PO)
 - FAL بار باقیمانده روی دیواره
 - FALD بار باقیمانده روی کف
 - FFP سرعت پیشروی (جانبی) سطحی
 - FFP سرعت پیشروی عمقی
 - انواع حالات جهت فرزكارى
 - تعیین جهت فرزکاری در حالت موافق براده برداری (DOWN CUT) به طورمعمول
 - انواع حالات نفوذ ابزار فرز
 - اجرای شبیهسازی با افزودن برنامه حفره تراشی
 - تغییر برخی پارامترها در استوانه دوم حفره تراشی
 - مشاهده تفاوتهای ایجاد حفره استوانهای دوم در شبیهسازی
 - تعیین مقدار پارامترهای حفره تراشی مستطیلی (RECTANGULAR POCKET)
 - تعیین مقدار پارامترهای حفره تراشی مستطیلی سایر حفرهها RECTANGULAR)
 POCKET)
 - تعیین مقدار پارامترهای حفره تراشی مستطیلی جهت پرداختکاری
 - تشابه مقادیر اکثر پارامترهای حفرههای مستطیلی
 - تفاوت پارامترهای حفرههای مستطیلی در مختصات نقطه مرجع و طول و عرض

- تعیین مقدار پارامترهای حفره تراشی دایرهای جهت پرداختکاری
 - سیکلهای شیارزنی (GROOVING) لوبیا شکل
- توانایی ایجاد سه نوع شیار در ماژول GROOVES در منوی عمودی با انتخاب MILLING از منوی افقی
 - ۱- سوراخ امتدادیافته (ELONGATED HOLE)
 - برابری عرض شیار لوبیا شکل با قطر فرز
 - تعیین مقادیر پارامترهای ایجاد شیار لوبیا شکل (سوراخ امتدادیافته)
- تعیین مختصات مرکز دایره (محاط) محل قرارگیری شیارها روی دو محور X,Y)
 CPA & CPO)
 - تعیین شعاع دایره مماسی (محاطی) بر شیارها RAD
 - STA1 زاویه اولین شیار
 - INDA زاویه بین شیارها
 - تعیین پارامتر و ابعاد قطعه خام استوانهای شکل
 - مشاهده شبیهسازی ایجاد شیارها
 - MATCH DATA و MATCH TOOL جهت هماهنگی ابزار
 - ۲- شیارهای متداول (GROOVING)
 - دلخواه بودن عرض شیارها
 - تعیین مقدار پارامترهای شیارها
 - توانایی عملیات پرداختکاری و خشن تراشی پشت سر هم با یک ابزار (حالت COMPELETE)
 - ترجیح برداشتن بار در جهت موافق فرزکاری (پادساعت گرد G3)
 - تعیین سرعت پیشروی در خشن تراشی (FFP1) سرعت جانبی یا سطحی
 - تعیین سرعت پیشروی در پرداختکاری (FFP2)
 - قرارگیری شیارهای جدید بین شیارهای قبلی با تنظیم زاویه مناسب

- تفاوت شیار GROOVING با شیار ELONGATED HOLE در نفوذ ابزار به صورت عمقی و سطحی
 - ۳- شیارهای دایرهای (CIRCULAR SLOT) شبیه بادامک و حالت خمیده
 - پرداختکاری فقط در لبهها با حالت عملیات FINISHING EDGE
 - تعیین مسیر شیارزنی در دو حالت مستقیم و دایرهای (پارامتر POSITIONING)
 - زاویه تعیینکننده اندازه شیار لوبیا شکل (AFSL)
 - اهمیت تعیین مسیر شیارزنی در مواقع وجود موانع سطحی
- محدودیت انتخاب فرز در دو سیکل شیارزنی آخر برنامه (الزام به کمتر بودن قطر فرز از عرض شیار)
 - سیکل فرزکاری رزوهها (MILLING THREADING)
 - استفاده از سیکل آماده رزوه زنی زیمنس به جای برنامهنویسی میان یابی حلقوی
 - تعریف ابزار جدید برای رزوه زنی (ابزار سری ۱۴۵)
 - تعیین ابعاد ابزار (طول و شعاع) فرز
 - الزام به کوچکتر بودن قطر فرز نسبت سوراخ جهت ایجاد رزوه داخلی
 - تعریف و تعیین پارامترهای قطعه خام در محیط SIMULATION
 - تعیین مقدار پارامترهای برنامه رزوه زنی جهت رزوههای داخلی
 - نحوه به دست آوردن قطر نامی رزوه (DIATH)
 - KDIAM قطر سوراخ موجود
 - PIT مقدار گام رزوه
 - FFR سرعت پیشروی ابزار در مسیر حلقوی (عدم وابستگی به گام رزوه)
- تعیین راستگرد یا پادساعتگرد بودن رزوه نسبت به جهت (بالا رفتن یا پایین آمدن)
 عمودی فرز (G2/G3)
 - تعیین مقدار پارامترهای برنامه رزوه زنی جهت رزوههای خارجی
 - تفاوت برنامه رزوه داخلی و خارجی در قطر نامی رزوه

اهمیت توجه به پرداخت در انتهای مسیر رزوه زنی

فصل يازدهم

- کارگاه عملی CNC (کارگاه دانشگاه)
- آموزش عملی اپراتوری سی ان سی با ماشین فرز سه محور با کنترلر زیمنس SINUMERIK 808D
 - تعویض ابزاردستی با ماشین درون کارگاه
 - استفاده از ماژول JOG برای انجام دستی عملیات تعویض ابزار
 - آزاد کردن سیستم هیدرولیک و جدا کردن ابزار گیر با دکمه شستی
 - نحوه تعویض فرز (باز کردن و بستن آن)
 - نحوه قرار دادن ابزار گیر درون اسپیندل با آزاد کردن سیستم هیدرولیک
 - اهمیت جایگاه (روبرو بودن) خار های ابزارگیر و اسپیندل
 - معرفی اولیه کلیات ماشین سی ان سی
 - نحوه تعريف محورها بر اساس قانون دست راست
- توانایی حرکت میز ماشین در راستای ۲ محور X و Z (در ماشین خاص موجود در کارگاه)
 - توانایی حرکت ابزار ماشین در راستای محور Y
 - حرکت عمودی میز ماشین به کمک اسلایدر
 - اهمیت نظافت اسلایدر و عدم نفوذ براده درون آن
 - معرفی کنترلر ماشین موجود
 - آشنایی با کنترل پنل NC (کنترلکننده عددی)
 - آشنایی با کنترل پنل ماشین
 - مرور کلیدهای کارشده در قسمت شبیهسازی
- دکمه ALARM CANCEL برای پاک کردن پیغام خطا و نیاز به ادامه اجرای برنامه
 - منو اصلی محیط کاری با کلید MENU FUNCTION

- تغییر حالتهای ALTERNATE با کلید SELECT
 - نمایش محیط کاری ماشین با کلید MACHINE
- نمایش محیط برنامهنویسی با کلید PROGRAM
- نمایش محیط اطلاعات ابزار و نقاط صفر با کلیدOFFSET
- مدیریت فایلهای برنامهنویسی با کلید PROGRAM MANGER
 - معرفی اجزای کنترل پنل ماشین
 - شستی توقف اضطراری (دکمه قرمز)
 - انواع حالات (MODE) ماشین
 - حرکت دستی محورها در حالت JOG
 - قرار دادن محورها در نقطه مرجع در حالت REF POINT
- اجرای موقت برنامه یا تست با حالت (MDA MANUAL DATA AUTOMATIC)
 - اجرای اتوماتیک برنامه با حالت AUTO
 - اجرای برنامه بهصورت خط به خط با حالت SINGLE BLOCK
- اجرای آزمایشی برنامه و مشاهده حرکت محورها روی کنترلر با کلید PROGRAM
 TEST (عدم اجرای برنامه روی ماشین)
 - روشن بودن چراغ بالای هر کلید در صورت فعال بودن آن
 - لزوم روشن بودن حالت ROV در برخی ماشینها
 - وجود دو پتانسیومتر تعیین سرعت پیشروی در برخی ماشینها
 - اعمال نظر روی کد G0 در صورت فعال بودن کلید ROV
 - توقف آپشنال با کلید M01
 - توقف اجرای برنامه در بلوک M0 در صورت فعال بودن کلیدM01
 - کلیدھایی برای تعریف وظایف مختلف توسط شرکت سازندہ
 - کلید چراغ ماشین
 - کلید فعالیت مایع خنککننده

- کلید خاموش شدن خودکار ماشین
- کلیدھایی برای جابجایی ابزارھا (TOOL MAGAZINE)
 - کلیدهایی برای تخلیه براده در دو جهت
- توقف اجرای برنامه و حرکت محورها با کلید FEED HOLD
- خاموش و روشن کردن درایو موتور با کلیدهای SERVO ON/OFF
 - آزاد کردن درایو سروو موتور از محورها
 - کلیدهای مربوط به تعیین جهت و یا توقف گردش اسپیندل
 - شروع برنامه با کلید CYCLE START
 - توقف برنامه با كليد CYCLE STOP
 - اجرای برنامه از اول با کلید RESET
- اهمیت پتانسیومترهای سرعت اسپیندل و پیشروی محورها و نکات ایمنی استفاده از آنها
 - روال روشن کردن و آمادهسازی ماشین جهت انجام کار
 - رساندن برق سه فاز به ماشین برای روشن شدن با گذاشتن سوییچ روی ۱
- چک کردن عدم فعال بودن همه کلیدهای توقف اضطراری قبل از روشن کردن ماشین
 - بردن محورها به نقاط مرجع اولین کار پس از روشن شدن ماشین و کنترلر
 - لزوم روشن و فعال بودن درایو سروو موتور جهت رفرنس شدن محورها
 - مشاهده نقاط مرجع نسبت به صفر قطعه کار (WCS) یا صفر ماشین (MCS)
 - مشاهده چرخش پیچهای ساچمهای (BALL SCREW) محورهای X,Y
 - نحوه کار با هندویل
 - فعال بودن همزمان حالتهای JOG و HANDWHEEL برای شروع کار با هندویل
 - مقیاسهای مختلف جابجایی دقیق محورها با هندویل (۱ میکرون،۱۰ میکرون و ۱۰۰ میکرون)
 - غیرفعال کردن حالت هندویل پس از انجام کار

- نصب ابزار روی قطعه خام بلوکی
- گونیا کردن سطوح قطعه (قرارگیری به موازات محورها) با برش ساده ۴ وجه
 - قابلیتهای کلید TSM
 - تعویض و فراخوانی ابزار
 - فراخوانی و سرعت وجهت حرکت اسپیندل
 - کدهای متفرقه M
 - مماس کردن ابزار با وجوه قطعه و گونیا کردن به کمک دقت هندویل
 - نصب ابزار فرز انگشتی با قطر ۲۰ (شناساندن طول ابزار به CNC)
 - شناسایی همزمان طول ابزار و نقطه صفر محور Z با مماس کردن ابزار
 - چک کردن اندازهگیری صحیح ابزار با فعال کردن کلید MDA (MDI)
- روند محاسبات و شناخت نقاط صفر قطعه کار روی محورهای X,Y درWORKOFFSET
 با کد G54
 - چک کردن شناخت نقطه صفر روی کد G54
 - قرارگیری صحیح مرکز ابزار روی صفر قطعه کار
 - 2حالت ایجاد برنامه جدید (فایل یا برنامه اصلی)
 - نوشتن برنامه کف تراشی
 - انتخاب برنامه فرز (MILL) از منوی افقی
 - انتخاب سیکل کف تراشی (FACE MILLING) از منوی عمودی
 - تعیین مقادیر پارامترهای سیکل کف تراشی (مشابه مقادیر تمرین شبیهسازی)
 - تعیین مقادیر مبنای شروع روی محورها (PA & PO)
 - صفر بودن SDA (زاویه شروع نسبت به محور X) به علت گونیا کردن قطعه
 - اندازهگیری زاویه شروع (SDA) در قطعات بزرگ (عدم نیاز به گونیا کردن)
 - انجام برنامه بالاتر از سطح قطعه کار برای اطمینان از درستی برنامه
 - انتقال نقطه صفر با دستور TRANS (تغییر Z)

- مرتب کردن بلوکهای برنامه با دکمه RENUMBER
- اجرای برنامه روی حالت خودکار با فعال بودن دکمههای AUTO و SINGLE BLOCK
 - اجرای برنامه روی سطح اصلی پس از اطمینان از صحیح بودن
 - اهمیت میزان پارامتر (STEP OVER) در کیفیت سطح نهایی
 - ادامه کارگاه عملی CNC
 - نحوه بازنویسی اسم برنامه (RENAME) از منوی عمودی برنامه
 - برنامه حفره تراشى با فرز
 - تعیین مقادیر پارامترهای برنامه حفره تراشی دایرهای
- CDIR چپگرد یا راستگرد بودن و موافق یا مخالف جهت برداشتن بار جهت برش (۲ معادل G2 و ۳ معادل G3)
 - • بودن CDIR بار موافق
 - ۱ بودن CDIR بار مخالف
- تعریف نوع عملیات (خشن تراشی یا پرداخت) و نحوه حرکت ابزار (G0,G1,HELIX) در پارامتر VARI
 - MIDA میزان STEP OVER (اشتراک پاس قبلی و بعدی) (در این ابزار ۱۲ معادل ۶۰٪ قطر فرز)
 - فراخوانی زیر برنامههای کف تراشی و حفره تراشی در برنامه اصلی
 - انواع ابزارهای فرز برای کاربرد در حفره تراشی
 - نفوذ برخی از فرزها مانند مته و امکان استفاده از کدG1
 - انتخاب نوع عملیات (VARI) وابسته به هندسه ابزار
 - تست برنامه بالاتر از سطح قطعه با کد TRANS
 - مشاهده اندازه پارامتر SDIS روی ماشین
 - خروج از حالت SINGLE BLOCK پس از اطمینان از انجام درست عملیات

- بازگشت به حالت SINGLE BLOCK و توقف برنامه جهت نظافت ابزار و خارج کردن برادهها
 - تعریف زیر برنامه جدید برای حفره تراشی با اندازه متفاوت
 - نحوه انتخاب و کپی بخشی از برنامه و وارد کردن در برنامه دیگر
 - تعیین مقادیر پارامترهای برنامه حفره تراشی دایرهای (مشابه حفره قبلی)
 - اجرای برنامه حفره تراشی روی حالت اتوماتیک
 - تعویض ابزار و استفاده از فرز انگشتی قطر ۸ جهت پرداختکاری
 - تعریف ابزار جدید در برنامه
 - مماس کردن ابزار بر سطح قطعه کار با گزینه T.S.M در حالت JOG
 - دقت بیشتر در مماس کردن ابزار به روی سطح به کمک هندویل
 - ثبت اندازه طول و شعاع اندازهگیری شده ابزار در سطح صفر قطعه کار درون لیست ابزارها
 - ایجاد زیر برنامه جدید برای پرداختکاری با ابزار جدید (فرز انگشتی)
 - کپی برنامه مشابه خشن تراشی حفرهها و انجام اصلاحات لازم پرداختکاری
 - تعیین مقادیر پارامترهای برنامه پرداختکاری
 - تغییر پارامتر عمق نفوذ هر مرحله پرداختکاری (MID)
 - تست برنامه پرداختکاری بالاتر از سطح قطعه با کد TRANS
 - انجام تنظیمات نهایی شناخت ابزار جدید در کنترلر
 - انجام برنامه پرداختکاری بالاتر از سطح قطعه جهت اطمینان از درستی برنامه
 - مشاهده اجرای برنامه پرداختکاری حفره اول
 - ایجاد زیر برنامه جدید برای پرداختکاری فرز انگشتی در حفره دوم
 - تعیین مقادیر پارامترهای برنامه پرداختکاری حفره دوم
 - عدم اجرای برنامههای خطوط قبلی با ; (در صورت نیاز)
 - اجرایی کردن برنامه با کمک دکمه EXECUTE

- مشاهده اجرای اتوماتیک برنامه پرداختکاری حفره دوم در کف عمق آن
- ایجاد یک حلقه در زیر برنامه جدید با برچسبگذاری و تکرار آن با دستورREPEAT
 - مشاهده G CODE های فعال حین اجرای برنامه با دکمه G FUNCTION
 - مشاهده سرعت محورها حین اجرای برنامه با دکمه AXIS FEEDRATE
 - مشاهده اجرای برنامه ایجاد شیار با تکرار حلقه
 - تعویض ابزار و بستن مته روی ماشین جهت سوراخکاری
 - سوراخکاری چندمرحلهای با سیکلهای سوراخکاری (DEEP HOLE DRILLING)
 - تعریف ابزار جدید در OFFSET محیط کاری ماشین (TOOL LIST)
 - تعیین ابعاد هندسی DRILLING TOOL
- مماس کردن ابزار بر سطح قطعه کار با گزینه T.S.M در حالت JOG و اندازهگیری ابعاد ابزار جدید با MEASURE TOOL
 - چک کردن نام ابزار قبل از اندازهگیری (جهت عدم تداخل اطلاعات ابزارها)
 - شناخت طول دقیق مته پس از مماس شدن بر سطح قطعه کار با SET LENGTH
 - اهمیت صفحه مرجع (RP) در هنگام اجرای سیکل سوراخکاری در کف عمق حفرهها
 - فراخوانی پایدار زیر برنامه سیکل سوراخکاری با کد MCALL
 - تعیین مقادیر پارامترهای برنامه سوراخکاری با دکمه DEEP HOLEDRILLING
 - تعریف پارامتر SDIS بدون علامت (حتی در صورت عمیق بودن کار و داشتن علامت منفی)
 - DTB میزان مکث در هر مرحله
 - امکان حالت تخلیه براده یا شکستن براده در پارامتر 0 یا 1 (VARI)
 - AXN تعیین محور نفوذ ابزار
 - جایگزینی مقادیر استاندارد نسبت به سایر مقادیر تعریف شده خود سیستم کنترلر در صورت خالی گذاشتن و عدم تعیین هر پارامتر
 - استفاده از برنامه آماده CYCLE83

- تعیین موقعیت و مختصات اجرای برنامه در بلوکهای بعدی CYCLE83 MCALL
 - تعیین پارامترهای الگوی دایرهای با دکمه HOLE CIRCLE
 - تعیین مقادیر پارامترهای برنامه آماده CYCLE83 برای حفره دوم
 - مشاهده تفاوت حالات تخلیه براده و شکستن براده در دو حفره

فصل دوازدهم

- برنامەنويسى سيكلھاى تراشكارى
- تحویل کانتور نهایی در برنامهنویسی تراشکاری (هم زیمنس هم فانوک)
- احتمال وجود المانهای مختلف مانند پخ، فیلت، کمان و... در کانتور نهایی
 - زوایای تنظیم ابزار خشن کاری (ROUGHING)
 - PCLNL کد استاندارد ابزار خشن کاری
 - زوایای تنظیم ابزار پرداختکاری (FINISHING)
 - SVJBL کد استاندارد ابزار پرداختکاری
 - اهمیت زاویه ابزار بر ای نفوذ به داخل قطعه
 - اهمیت تنظیم اندازه زاویه با اندازه شیب قطعه نهایی
 - انتخاب بالاترین ارتفاع برای اتمام کانتور در سیکلهای تراشکاری
 - امکان انتخاب حرکت ابزار به شکل طولی یا عرضی
- حرکات تکراری ابزار تراشکاری روی کانتورهای قطعات خاص (ریختهگری با فورجشده)
 با کمک دستور OFFN
 - برنامه آماده تراشکاری در CYCLE95
- عدم نیاز به کدهای جبران شعاع ابزار (G41/42) در زیر برنامههای پارامتری تراشکاری
 - تعريف جهت زاويه نسبت جهت مثبت محور X ها
 - اجرای سیکل تراشکاری روی نرمافزار SINUTRAIN
 - مشاهده محیطهای کاری اصلی نرمافزار با دکمه F10
 - ایجاد یک پوشه و فایل برنامهنویسی اصلی در بخش برنامهنویسی PROGRAM
 - انتخاب صفحه کاری G18 برای تراشکاری در ابتدای برنامه اصلی
 - اهمیت تعویض ابزار در فاصلهای مناسب جهت جلوگیری از خطاهای رایج
 - تعریف نقطه تعویض ابزار (به کمک ابزار گیر) نسبت به نقطه صفر ماشین

- تعريف اطلاعات ابزار با ماژول TOOL COMPENSTION در محيط PARAMETR
 - انواع ابزارهای تراشکاری در سری ۵۰۰ ابزارها
 - ابزار خشن تراشى
 - ابزار پرداختکاری
 - ابزار شیارزنی
 - ابزار پیچ بری (رزوه زنی)
 - ابزار برش
 - ابزارهای فرم دار
 - ابزارهای اندازهگیری
 - تعیین پارامترهای ابزار خشن تراشی
 - تعیین جهت گیری نوک ابزار (ORIENTION) در گزینه EDGE POS
 - تعیین ابعاد طول و عرض ابزار (X,Z) با مماس کردن آن بر روی قطعه
 - نکات سایش ابزار به مرور زمان و مقایسه آن با تلورانس مجاز
 - تعیین مقدار شعاع نوک ابزار
- اهمیت تعیین صحیح مسیر زاویه ابزار (CLEAR ANGLE) جهت مقایسه با زاویه سطح شیبدار قطعه نهایی
 - تعیین پارامترهای ابزار پرداختکاری
 - LIMS حداکثر سرعت اسپیندل
 - اهمیت قرارگیری ابزار تراش در موقعیت مناسب قبل از ورود به CYCLE95
- مشاهده سیکلهای اصلی تراشکاری در منوی عمودی با انتخاب TURNING از منوی
 افقی
 - پیشانی تراشی مقدمه هرکدام از سیکلهای تراشکاری
 - معرفی پارامترهای CYCLE 95
 - NPP نام زیر برنامهای که کانتور (مسیر عملیات را مشخص میکند)

- شناخت NPP بهعنوان یک متغیر رشتهای (STRING USER DEFINED)
 - تفاوت عملیات مختلف (خشن کاری، پرداختکاری و عملیات کامل)
 - کیفیت پایین نوع عملیات COMPELETE با یک ابزار
 - تعیین مسیر حرکت ابزار در طول قطعه با انتخاب LONG
- تعیین مسیر حرکت ابزار تراش روی قطر قطعه با انتخاب FACE (پیشانی تراشی)
 - اهمیت یکنواختی (رفتوبرگشت کمتر ابزار) مسیر حرکت ابزار در انتخاب LONG/FACE
 - OUTSIDE روتراشی
 - INSIDE داخل تراشی
 - یکنواختی و عدم پلهای شدن قطعه با انتخاب WITH ROUNDING
 - MID حداکثر عمق نفوذ در هر مرحله
 - اهمیت چک کردن نفوذ قطری یا شعاعی در ماشینهای مختلف توسط اپراتور
 - FAL بار باقیمانده جهت پرداختکاری روی محورهای X، Z
 - FF سرعت پیشروی
 - پارامترهای DT, DAM, VRT جهت شکستن برادهها و کیفیت براده (مناسب شفتهایی با طول بلند)
 - مشاهده پارامترهای در برنامه اصلی
 - مشاهده نوع عملیات در برنامه اصلی به صورت عدد (VARI)
 - جدول ضابطه تعیین VARI در عملیات مختلف
 - تعیین ابعاد قطعه خام استوانهای قبل از اجرای شبیهسازی
- مشاهده میزان دقیق عمق نفوذ در هر مرحله در شبیهسازی به کمکSINGLE BLOCK
 - اصلاح پارامتر میزان نفوذ شعاعی (MID)
 - اهمیت ساپورت کردن از طول قطعه به کمک مرغک در پیشانی تراشی
 - برگشت ابزار تراش به نقطه شروع پس از پایان عملیات

- کپی کردن بلوکهای برنامه مشابه (مختصات مشابه) جهت مرحله پرداختکاری
 - تعیین مقادیر پارامترهای پرداختکاری
- سخت بودن اصلاح برنامه در نرمافزارهای CAM برخلاف شبیهساز SINUTRAIN
 - ایجاد برنامه کانتور داخل تراشی با کمک CYCLE95
- تعریف ابزار جدید از سری ۵۰۰ خشن کاری (سری پرداختکاری) برای عملیات داخل تراشی
 - اهمیت تعیین موقعیت لبه برش در ابزار داخل تراشی
 - تعیین ابعاد ابزار داخل تراشی
 - منفی بودن محور اول (LENGTH1) ابزار داخل تراشی در اکثر مواقع
 - مثبت بودن سایش ابزار در محور اول (LENGTH1)
- اهمیت نقطه شروع برنامه داخل تراشی (تناسب قطر سوراخ و ابعاد ابزار داخل تراشی)
 - تعیین مقادیر پارامترهای عملیات COMPELETE برای داخل تراشی (خشن کاری و یرداخت همزمان)
 - عمق نفوذ بار (MID) کمتر به دلیل ظریف بودن داخل تراشی
 - مشاهده روند تعویض ابزار در حین اجرای شبیهسازی
 - آشنایی با برنامه پرکاربرد پیچ بری رزوه زنی (THREADING)
 - انجام عملیات تراشکاری پیشنیاز عملیات پیچ بری
 - تعیین مقادیر پارامترهای عملیات خشن کاری
 - مشاهده اشتباه بودن زاویه ابزار در شبیهسازی و اصلاح آن
 - تعریف ابزار جدید از سری ۵۰۰ برای رزوه زنی (540 THREADING TOOL)
 - تعیین موقعیت و جهتگیری ابزار رزوه زنی
- ثابت بودن دور اسپیندل برای رزوه زنی با کد G95 (عدم تغییر دور اسپیندل با تغییرات قطر)

- انتخاب برنامه رزوه زنی THREAD CUTTING (CYCLE 97) از منوی عمودی پس از انتخاب TURNING از منوی افقی
 - تعیین مقادیر پارامترهای برنامه رزوه زنی
 - MPIT تعریف سایز رزوه در پیچ متریک
 - PIT تعیین خودکار گام رزوه پس از تعیین سایز رزوه
- انتخاب دلخواه گام رزوه در صورت خالی گذاشتن جداول استاندارد (TABLE NONE)
 - SPL نقطه شروع پیچ بری
 - FPL نقطه پایان پیچ بری
 - اهمیت هماهنگی بین پیشروی و چرخش اسپیندل در قلاویزکاری و پیچ بری
 - کمک انکودر زاویه سنج به هماهنگی گامها و رزوهها در پیچ بری
 - چند مرحله بودن عملیات پیچ بری
 - APP فاصله اضافه شده به مسیر ابتدایی پیچ بری جهت هماهنگی رزوه ها
 - ROP فاصله اضافه شده به مسیر انتهایی پیچ بری جهت هماهنگی رزوهها
 - وابستگی مقادیر ROP, APP به دور اسپیندل، شتاب محورها و گام
 - وابستگی اکثر پارامترهای برنامه پیچ بری به جهت چرخش رزوهها (M3/M4)
 - TDEP عمق رزوه وابسته به گام رزوه (استخراج مقدار دقیق عمق رزوه از جداول استاندارد)
 - FAL بار باقیمانده جهت پرداختکاری (متفاوت بار باقیمانده در تراشکاری)
 - IANG زاویه نفوذ ابزار
 - رابطه به دست آوردن زاویه نفوذ در کنترلر زیمنس
 - NSP نقطه شروع پیچ بری به لحاظ زاویه ی
 - NRC تعداد پاسهای براده برداری (وابسته به اطلاعات ابزار)
 - NID پاسهای غیر برشی در انتهای عملیات پیچ بری (جهت صافکاری و تمیزکاری)
 - انتخاب پارامتر داخلی یا خارجی بودن رزوه (پیچ یا مهره)

- تعیین ثابت یا کاهشی بودن عمق نفوذ
- تفاوت گام واقعی و گام ظاهری (LEAD & PITCH)
 - NUMT تعیین یک یا چند راهه بودن رزوهها
- VRT میزان فاصله گرفتن ابزار از عمق رزوه (کف سوراخ در مهرهها) پس از انجام هر پاس
 - مشاهده شبیهسازی عملیات پیچ بری
 - مشاهده تفاوت نفوذ شعاعی و جانبی در پیچ بری با تغییرات IANG
 - برنامه سیکل شیارزنی (GROOVING)
 - انتخاب سیکل شیارزنی (GROOVE) از منوی عمودی پس از انتخاب TURNING از منوی افقی (CYCLE93)
 - تعریف ابزار جدید برای شیارزنی از سری ۵۰۰ (S20 RECESSING TOOL)
 - تفاوت موقعیت جهت دو لبه برشی ابزار شیارزنی
 - امکان تعیین دو جهت برای ابزار شیارزنی با گزینه OK+NEW EDGE
 - تعریف یک ابزار در برنامه اصلی و انتخاب خودکار ابزار با جهت برشی متفاوت در اجرای برنامه
 - تعیین مقادیر پارامترهای سیکل شیارزنی
 - SPD قطر استوانهای که باید شیاردار شود
 - SPL نقطه شروع شیارزنی (متناسب با لبه انتخابی چپ یا راست)
 - WIDG عرض شیاری که باید ماشینکاری شود
 - DIAG عمق شیار (نسبت به لبه SPL)
 - STA1 زاویه شیب مخروط سطح جانبی
 - ANG (2 & 1) زاویه لبههای عمقی و سطحی
 - CO & RO (پخ یا فیلت)
 CO & RO (پخ یا فیلت)
 - RI & Cl
 I & 2) RI & Cl

- 2 FAL 2 & 1 بار باقیمانده جهت پرداختکاری
- اختلاف کنترلر های جدید و قدیمی زیمنس در نحوه تعریف ابعاد پخ شیار (وتر یا ساق)
- انتخاب نوع عملیات و نقطه شروع شیارزنی طبق ضابطه کاتالوگ زیمنس (VARI)
 - اجرای شبیهسازی شیارزنی
 - اصلاحات پارامترهای سیکل شیارزنی جهت مشاهده بهتر انجام عملیات
 - برنامەنويسى سيكلھاى كنترلر فانوک
 - اهمیت توانایی سیکلهای کنترلرهای مختلف در قطعهسازی
- عدم نیاز به نرمافزارهای CAD/CAM در قطعهسازی باوجود سیکلهای برنامهنویسی
 - مختصر و مفید بودن سیکلهای سوراخکاری عمیق در کنترلر FANUC
 - G73/G83 کدهای اصلی سوراخکاری عمیق در فانوک
 - اهمیت قرارگیری ابزار با فاصله از سطح قطعه کار
 - تعریف مختصات مطلق مرکز سوراخ با X, Y در کد G73
 - تعریف مختصات مطلق انتهای سوراخ با Z در کد G73
 - تعریف فاصله مطلق سطح ایمن با R در کد G73
 - تفاوت کدهای G73 و G83 در تعریف عمق نفوذ در هر مرحله (Q)
 - براده شکنی Q در کد G73 (سوراخکاری عمیق سریع)
 - تخلیه براده Q در کد G83
 - استفاده از کد G98/G99 همزمان با G73/G83
 - تفاوت کدهای G98 و G99 در ارتفاع سطح بازگشت ابزار
 - پایداری (MODAL) دستورات همارز G73/83/82/84
 - لغو کردن دستورات پایدار با کد G80 (در انتهای برنامه)
 - حساسیت برخی از کنترلرهای فانوک به علامت اعشار
 - سیکل قلاویز کاری (RIGID TAPPING) در کنترلر فانوک (G84/74)

- G84 قلاویزکاری راستگرد
 - G74 قلاویزکاری چپگرد
- تعریف مختصات مطلق مرکز سوراخ قلاویزکاری X,Y در کد G74/G84
 - تعریف مختصات مطلق انتهای قلاویزکاری با Z در کد G74/84
 - P زمان مکث بر حسب میلیثانیه
 - F گام (پیشروی) قلاویز
- استفاده از کد M29 برای قلاویزکاری صلب در بلوک قبلی سیکل G74/84
 - وابستگی تعیین واحد گام F به G94/95
 - G94 گام بر حسب میلیمتر بر دقیقه
 - G95 گام بر حسب میلیمتر بر دور (اتمام بحث ۲۵:۳۲)
- تمرین شبیهسازی برنامهنویسی سیکلهای کنترلر فانوک در نرمافزار SSCNC
 - انتخاب ابزار از TOOL MANAGEMENT
 - تعیین جایگاه ابزارهای سوراخکاری و قلاویزکاری در TOOL MAGAZINE
 - تنظیمات تعریف قطعه کار خام و ابزار
- تعريف نقطه صفر (X,Y) قطعه كار با انتخاب ماژول (دكمه) OFFSET SETTING
 - هماهنگی و تنظیم نقطه صفر محور Z نسبت به ابزار
 - چک کردن برنامه در محیط ویرایش برنامه (EDIT PROGRAM)
 - اصلاح عمق سوراخکاری Z با کلید ALTER
 - پوشش گسترده انواع ماشینهای CNC با کنترلر فانوک
- پیام کنترلر مبنی بر تعیین دوباره مختصات مرجع در صورت استفاده از کلید توقف اضطراری (برخی مواقع)
 - تنظیم دوباره محورها طبق نقطه مرجع در حالت REF
 - مشاهده اجرای برنامه در حالت اتوماتیک
 - مشاهده تفاوت کدهای G99 و G98 در ارتفاع بازگشت ابزار درون شبیهساز

- سیکلهای تراشکاری در کنترلر فانوک
- تفاوت کدهای سیکل تراشکاری در سریهای مختلف کنترلر فانوک (سریهای A، B، A)
 - G71 کد سیکل تراشکاری کنترلر فانوک (سریهای A، B)
 - G70 کد سیکل پرداختکاری کنترلر فانوک (سریهای A، B)
 - G73 کد سیکل تراشکاری کنترلر فانوک (سری C)
 - G72 کد سیکل پرداختکاری کنترلر فانوک (سری C)
 - اهمیت فاصله نقطه شروع ابزار تراش از پیشانی و سطح قطعه کار قبل از شروع کار
 - ۴ حالت اصلی مسیر کانتور های تراشکاری
 - تعیین علامت پارامترهای U, W در سیکل G71 طبق ۴ حالت اصلی مسیر
 - روتراشی +U و +W (حرکت طولی از مرغک به سمت فک و سهنظام)
 - داخل تراشی U و + W
 - روتراشی +U و -W (حرکت طولی از فک و سهنظام به سمت مرغک)
 - داخل تراشی U و W (حرکت از فک و سهنظام به سمت مته مرغک)
 - الزام به تعریف سیکل تراشکاری با کد G71 در دو بلوک
 - تعریف حداکثر عمق نفوذ در هر محله با کد U در بلوک اول G71 (تعریف به صورت شعاعی)
 - R میزان برگشت و فاصله گیری ابزار از سطح قطعه کار در هر مرحله پیشروی (G71)
 - P شماره بلوک شروع کانتور طبق دستور G71
 - Q شماره بلوک پایان کانتور طبق دستور G71
- U میزان بار باقیمانده جهت پرداختکاری (تعریف قطری در برنامه و عملگر شعاعی در ماشین)
 - انجام عملیات پرداختکاری در کد G70 با تعریف نقاط P, Q
 - حل مثال نمونه برنامهنویسی سیکل تراشکاری در کنترلر فانوک
 - رفتن به نقطه مرجع برای تعویض ابزار با کد G28

- استفاده از کد G50 برای تعیین حداکثر سرعت اسپیندل (معادل کد G92)
 - تعریف مسیر و کانتور خشن تراشی و پرداختکاری با برنامهنویسی
 - مشاهده جدول انواع G CODE های سریهای مختلف کنترلر فانوک
 - تعریف ابزارهای خشن تراشی و پرداختکاری در نرمافزار SSCNC
 - تعريف قطعه خام استوانهای
 - نشان دادن مسیر حرکت ابزار قبل از شروع عملیات شبیهسازی
 - اجرای برنامه با فعال بودن همزمان حالات AUTO و SINGLE BLOCK
 - مشاهده نمونه برنامه سیکلهای تراشکاری
 - برنامەنویسی سیکل پیچ تراشی (THREADING) در کنترلر فانوک
 - تعریف سیکل پیچ بری با کد G76 (در سری A فانوک)
 - دوخطه بودن کد G76
 - پارامترهای بلوک اول (P,Q,R) G76
 - تعریف یک عدد ۶ رقمی همراه با پارامتر P
 - عوامل مؤثر در ارقام P
 - تعداد پاسهای پرداخت
 - محل خروج ابزار رزوه زنی (شماره گام)
 - زاویه رأس رزوه
 - Q حداقل عمق نفوذ
 - R بار باقیمانده پرداختکاری
 - پارامترهای بلوک دوم G76 (P,Q,R,X,Z,F)
 - تفاوتهای X,Z با کنترلر زیمنس
 - وابستگی Z به عدد گام خروج ابزار
 - X نشاندهنده قطر داخلی رزوه (ونه تاج رزوه)
 - R اختلاف شعاع شروع و پایان (مخصوص پیچهای مخروطی)

- P عمق رزوه (THREAD DEPTH)
 - Q عمق اولین مرحله
 - F گام رزوه
- استفاده از تکنیک تکرار برای ایجاد رزوههای دوراهه (چند راهه)
- رابطه به دست آوردن گام حقیقی از گام ظاهری (Pitch) و تعداد راهها
 - روش ایجاد رزوههای چند راهه
- تمرین شبیهسازی برنامهنویسی سیکل پیچ تراشی کنترلر فانوک در نرمافزار SSCNC
 - انجام عملیات تراشکاری پیشنیاز انجام پیچ بری
 - مشاهده مسیر و زاویه خروج ابزار پیچ بری قبل شروع شبیهسازی
 - تعیین چپگرد یا راستگرد بودن رزوه وابسته به جهت چرخش اسپیندل و شروع عملیات از سهنظام یا مرغک